ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of magneto-thermopower (S(H, T)) of interfacial delta doped LaTiO$_3$/SrTiO$_3$ (LTO/STO) heterostructure by an iso-structural antiferromagnetic perovskite LaCrO$_3$ are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is $approx$ 118 $mu$V/K, but increases dramatically on $delta$-doping. The observed linear temperature dependence of S(T) over the temperature range 100 K to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S(T) displays a distinct enhancement in the temperature range (T $<$ 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field, and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo model based interpretation of S(H, T).
We report the evolution of magnetic moment as well as magnetic anisotropy with crystalline order in Co$_2$MnSi thin films grown on $(100)$ MgO by pulsed laser deposition. The films become more ordered as the annealing temperature ($T_A$) increases fr om 400 to 600 $^0$C. The extent of emph{L}$2_1$ ordering in the films annealed at 600 $^0$C is $approx 96%$. The static magnetization measurements by vibrating sample magnetometry shows a maximum moment of 4.95 $mu_B$ per formula unit with low coercivity ($H_C$ $approx$ 65 Oe) in the films annealed at 600 $^0$C. A rigorous analysis of the azimuthal and polar angle dependent ferromagnetic resonance (FMR) measured at several temperatures allows determination of various anisotropy fields relevant to our system as a function of $T_A$. Finally, we have evaluated the exchange stiffness constant down to 100 K using spin wave modes in FMR spectra. We have also estimated the exchange energies as well as stiffness constant by varying the lattice parameter emph{ab-initio} using the Korringa-Kohn-Rostoker method.
Superconductivity (S) and ferromagnetism (F) are probed through transport and magnetization measurements in nanometer scale HoNi$_5$-NbN (F-S) bilayers and HoNi$_5$-NbN-HoNi$_5$ (F-S-F) trilayers. The choice of materials has been made on the basis of their comparable ordering temperatures and strong magnetic anisotropy in HoNi$_5$. We observe the normal state reentrant behavior in resistance vs. temperature plots of the F-S-F structures just below the superconducting transition in the limited range of HoNi$_5$ layer thickness d$_{HN}$ (20 nm $<$ d$_{HN}$ $<$ 80 nm) when d$_{NbN}$ is fixed at $simeq$ 10 nm. The reentrance is quenched by increasing the out-of-plane (H$_{perp}$) magnetic field and transport current where as in-plane (H$_{parallel}$) field of $leq$ 1500 Oe has no effect on the reentrance. The thermally activated flux flow characteristics of the S, F-S and F-S-F layers reveal a transition from collective pinning to single vortex pinning as we place F layers on both sides of the S film. The origin of the reentrant behavior seen here in the range of 0.74 $leq$ T$_{Curie}$/T$_C$ $leq$ 0.92 is attribute to a delicate balance between the magnetic exchange energy and the condensation energy in the interfacial regions of the trilayer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا