ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - G. Lamura , T. Shiroka , P. Bonf`a 2015
Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd cas e has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.
The evolution of the magnetic order in FeSeTe crystals as a function of Se content was investigated by means of ac/dc magnetometry and muon-spin spectroscopy. Experimental results and self-consistent DFT calculations both indicate that muons are impl anted in vacant iron-excess sites, where they probe a local field mainly of dipolar origin, resulting from an antiferromagnetic (AFM) bicollinear arrangement of iron spins. This long-range AFM phase disorders progressively with increasing Se content. At the same time all the tested samples manifest a marked glassy character that vanishes for high Se contents. The presence of local electronic/compositional inhomogeneities most likely favours the growth of clusters whose magnetic moment freezes at low temperature. This glassy magnetic phase justifies both the coherent muon precession seen at short times in the asymmetry data, as well as the glassy behaviour evidenced by both dc and ac magnetometry.
We report a detailed investigation of RECoPO (RE = La, Pr) and LaCoAsO materials performed by means of muon spin spectroscopy. Zero-field measurements show that the electrons localized on the Pr$^{3+}$ ions do not play any role in the static magnetic properties of the compounds. Magnetism at the local level is indeed fully dominated by the weakly-itinerant ferromagnetism from the Co sublattice only. The increase of the chemical pressure triggered by the different ionic radii of La$^{3+}$ and Pr$^{3+}$, on the other hand, plays a crucial role in enhancing the value of the magnetic critical temperature and can be mimicked by the application of external hydrostatic pressure up to 24 kbar. A sharp discontinuity in the local magnetic field at the muon site in LaCoPO at around 5 kbar suggests a sizeable modification in the band structure of the material upon increasing pressure. This scenario is qualitatively supported by emph{ab-initio} density-functional theory calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا