ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the structure of the [bmim][Tf2N]/silica interface by simulating the indentation of a thin (4 nm) [bmim][Tf2N] film by a hard nanometric tip. The ionic liquid/silica interface is represented in atomistic detail, while the tip is modell ed by a spherical mesoscopic particle interacting via an effective short-range potential. Plots of the normal force (Fz) on the tip as a function of its distance from the silica surface highlight the effect of weak layering in the ionic liquid structure, as well as the progressive loss of fluidity in approaching the silica surface. The simulation results for Fz are in near-quantitative agreement with new AFM data measured on the same [bmim][Tf2N]/silica interface at comparable thermodynamic conditions.
Many-electron systems confined to a quasi-1D geometry by a cylindrical distribution of positive charge have been investigated by density functional computations in the unrestricted local spin density approximation. Our investigations have been focuse d on the low density regime, in which electrons are localised. The results reveal a wide variety of different charge and spin configurations, including linear and zig-zag chains, single and double-strand helices, and twisted chains of dimers. The spin-spin coupling turns from weakly anti-ferromagnetic at relatively high density, to weakly ferromagnetic at the lowest densities considered in our computations. The stability of linear chains of localised charge has been investigated by analysing the radial dependence of the self-consistent potential and by computing the dispersion relation of low-energy harmonic excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا