ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate that measurements of atom-number fluctuations in a trapped dipolar condensate can reveal the presence of the elusive roton excitation. The key signature is a super-Poissonian peak in the fluctuations as the size of the measurement cell is varied, with the maximum occurring when the size is comparable to the roton wavelength. The magnitude of this roton feature is enhanced with temperature. The variation in fluctuations across the condensate demonstrates that the roton excitations are effectively confined to propagate in the densest central region, realizing a density trapped roton gas. While our main results are based on full numerical solutions of the meanfield equations, we also develop and validate a simple local density theory. Finally, we consider fluctuations measured within a washer-shaped cell which filters out the contribution of modes with nonzero angular momentum and provides a signal sensitive to individual roton modes.
We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stoch astic projected Gross-Pitaevskii theory to provide the first quantitative description of the full momentum distribution measurements of Van Amerongen et al., Phys. Rev. Lett. 100, 090402 (2008). We find the fitted temperatures from the stochastic projected Gross-Pitaevskii approach are in excellent agreement with those determined by Yang-Yang kinetic-energy thermometry.
We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening t he confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics, and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.
123 - T. M. Wright , P. B. Blakie , 2009
The coherence properties of degenerate Bose gases have usually been expressed in terms of spatial correlation functions, neglecting the rich information encoded in their temporal behavior. In this paper we show, using a Hamiltonian classical-field fo rmalism, that temporal correlations can be used to characterize familiar properties of a finite-temperature degenerate Bose gas. The temporal coherence of a Bose-Einstein condensate is limited only by the slow diffusion of its phase, and thus the presence of a condensate is indicated by a sharp feature in the temporal power spectrum of the field. We show that the condensate mode can be obtained by averaging the field for a short time in an appropriate phase-rotating frame, and that for a wide range of temperatures, the condensate obtained in this approach agrees well with that defined by the Penrose-Onsager criterion based on one-body (spatial) correlations. For time periods long compared to the phase diffusion time, the field will average to zero, as we would expect from the overall U(1) symmetry of the Hamiltonian. We identify the emergence of the first moment on short time scales with the concept of U(1) symmetry breaking that is central to traditional mean-field theories of Bose condensation. We demonstrate that the short-time averaging procedure constitutes a general analog of the anomalous averaging operation of symmetry-broken theories by calculating the anomalous thermal density of the field, which we find to have form and temperature dependence consistent with the results of mean-field theories.
We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation i s the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform necessary to evaluate the dipolar interaction in reciprocal space. We extensively characterize the accuracy of our approach, and derive Ehrenfest equations for the evolution of the angular momentum.
We review phase space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form t o the Gross-Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develo
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا