ترغب بنشر مسار تعليمي؟ اضغط هنا

We forecast dark energy constraints that could be obtained from a new large sample of Type Ia supernovae where those at high redshift are acquired with the Euclid space mission. We simulate a three-prong SN survey: a z<0.35 nearby sample (8000 SNe), a 0.2<z<0.95 intermediate sample (8800 SNe), and a 0.75<z<1.55 high-z sample (1700 SNe). The nearby and intermediate surveys are assumed to be conducted from the ground, while the high-z is a joint ground- and space-based survey. This latter survey, the Dark Energy Supernova Infra-Red Experiment (DESIRE), is designed to fit within 6 months of Euclid observing time, with a dedicated observing program. We simulate the SN events as they would be observed in rolling-search mode by the various instruments, and derive the quality of expected cosmological constraints. We account for known systematic uncertainties, in particular calibration uncertainties including their contribution through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and a 1-D geometric Planck prior, we find that the ensemble of surveys would yield competitive constraints: a constant equation of state parameter can be constrained to sigma(w)=0.022, and a Dark Energy Task Force figure of merit of 203 is found for a two-parameter equation of state. Our simulations thus indicate that Euclid can bring a significant contribution to a purely geometrical cosmology constraint by extending a high-quality SN Hubble diagram to z~1.5. We also present other science topics enabled by the DESIRE Euclid observations
42 - P. Astier , P. El Hage , J. Guy 2013
We present a technique to measure lightcurves of time-variable point sources on a spatially structured background from imaging data. The technique was developed to measure light curves of SNLS supernovae in order to infer their distances. This photom etry technique performs simultaneous PSF photometry at the same sky position on an image series. We describe two implementations of the method: one that resamples images before measuring fluxes, and one which does not. In both instances, we sketch the key algorithms involved and present the validation using semi-artificial sources introduced in real images in order to assess the accuracy of the supernova flux measurements relative to that of surrounding stars. We describe the methods required to anchor these PSF fluxes to calibrated aperture catalogs, in order to derive SN magnitudes. We find a marginally significant bias of 2 mmag of the after-resampling method, and no bias at the mmag accuracy for the non-resampling method. Given surrounding star magnitudes, we determine the systematic uncertainty of SN magnitudes to be less than 1.5 mmag, which represents about one third of the current photometric calibration uncertainty affecting SN measurements. The SN photometry delivers several by-products: bright star PSF flux mea- surements which have a repeatability of about 0.6%, as for aperture measurements; we measure relative astrometric positions with a noise floor of 2.4 mas for a single-image bright star measurement; we show that in all bands of the MegaCam instrument, stars exhibit a profile linearly broadening with flux by about 0.5% over the whole brightness range.
62 - P. Astier , J. Guy , R. Pain 2010
We present a forecast of dark energy constraints that could be obtained from a large sample of distances to Type Ia supernovae detected and measured from space. We simulate the supernova events as they would be observed by a EUCLID-like telescope wit h its two imagers, assuming those would be equipped with 4 visible and 3 near infrared swappable filters. We account for known systematic uncertainties affecting the cosmological constraints, including those arising through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and Planck priors, we find that a 18 month survey would yield constraints on the dark energy equation of state comparable to the cosmic shear approach in EUCLID: a variable two-parameter equation of state can be constrained to ~0.03 at z~0.3. These constraints are derived from distances to about 13,000 supernovae out to z=1.5, observed in two cones of 10 and 50 deg^2. These constraints do not require measuring a nearby supernova sample from the ground. Provided swappable filters can be accommodated on EUCLID, distances to supernovae can be measured from space and contribute to obtain the most precise constraints on dark energy properties.
104 - T. J. Bronder 2007
Aims: We present a quantitative study of a new data set of high redshift Type Ia supernovae spectra, observed at the Gemini telescopes during the first 34 months of the Supernova Legacy Survey. During this time 123 supernovae candidates were observed , of which 87 have been identified as SNe Ia at a median redshift of z=0.720. Spectra from the entire second year of the survey and part of the third year (59 total SNe candidates with 46 confirmed SNe Ia) are published here for the first time. The spectroscopic measurements made on this data set are used determine if these distant SNe comprise a population similar to those observed locally. Methods: Rest-frame equivalent width and ejection velocity measurements are made on four spectroscopic features. Corresponding measurements are presented for a set of 167 spectra from 24 low-z SNe Ia from the literature. Results: We show that there exists a sample at high redshift with properties similar to nearby SNe. No significant difference was found between the distributions of measurements at low and high redsift for three of the features. The fourth feature displays a possible difference that should be investigated further. Correlations between Type Ia SNe properties and host galaxy morphology were also found to be similar at low and high z, and within each host galaxy class we see no evidence for redshift-evolution in SN properties. A new correlation between SNe Ia peak magnitude and the equivalent width of SiII absorption is presented. We demonstrate that this correlation reduces the scatter in SNe Ia luminosity distances in a manner consistent with the lightcurve shape-luminosity corrections that are used for Type Ia SNe cosmology. Conclusions: We show that this new sample of SNLS SNe Ia has spectroscopic properties similar to nearby objects. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا