ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of Ultra High Energy Cosmic Rays represents one of the most challenging topic in the Cosmic Rays and in the Astroparticle Physics fields. The interaction of primary particles with atmospheric nuclei produces a huge Extensive Air Shower toge ther with isotropic emission of UV fluorescence light and highly directional Cherenkov photons, that are reflected/diffused isotropically by the impact on the Earths surface or on high optical depth clouds. For space-based observations, detecting the reflected Cherenkov signal in a delayed coincidence with the fluorescence light improves the accuracy of the shower reconstruction in space and in particular the measurement of the shower maximum, giving a strong signature for discriminating hadrons and neutrinos, and helping to estimate the primary chemical composition. Since the Earths surface is mostly covered by water, the ULTRA (UV Light Transmission and Reflection in the Atmosphere)experiment has been designed to provide the diffusing properties of sea water, overcoming the lack of information in this specific field. A small EAS array, made up of 5 particle detectors, and an UV optical device, have been coupled to detect in coincidence both electromagnetic and UV components. The detector was in operation from May to December, 2005, in a small private harbor in Capo Granitola (Italy); the results of these measurements in terms of diffusion coefficient and threshold energy are presented here.
GAW is a path-finder experiment to test the feasibility of a new generation of Imaging Atmospheric Cherenkov telescopes that join high flux sensitivity with large field of view capability using Fresnel lens, stereoscopic observational approach, and s ingle photon counting mode. GAW is an array of three telescopes that will be erected at the Calar Alto Observatory site (Spain, 2150 m a.s.l.). To evaluate the performance of GAW, a consistent data--set has been simulated, including a Crab-like source observation, and a proper image analysis code has been developed, as described in this contribution. The expected performance of GAW are also reported, mainly for what concerns effective area, angular resolution, Cherenkov flux as function of the core distance, ability in the gamma/proton separation, and sensitivity. The first telescope realization, foreseen within the end of this year, will allow to verify if the parameters used in the analysis are in agreement with the real performance of the GAW apparatus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا