ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - P. Arnalte-Mur 2013
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov er $2.38 mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $sigma_z lesssim 0.014 (1+z)$, down to $I_{rm AB} < 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{rm th} simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the COSMOS and ELAIS-N1 fields are dominated by the presence of large structures. For the intermediate and bright samples, $L^{rm med} gtrsim 0.6L^{*}$, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 11.5$ for samples with $L^{rm med} simeq 0.3 L^{*}$ and $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 13.0$ for samples with $L^{rm med} simeq 2 L^{*}$, with typical occupation numbers in the range of $sim 1 - 3$ galaxies per halo.
Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been p reviously detected using correlation functions and power spectra of the galaxy distribution. In this work, we present a new method for the detection of the real-space structures associated with this feature. These baryon acoustic structures are spherical shells with a relatively small density contrast, surrounding high density central regions. We design a specific wavelet adapted to the search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Lambda - Cold Dark Matter (LCDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ci`encies de lEspai (MICE). We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the `Main catalogue to trace the shells, and the Luminous Red Galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRGs in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAOs. We show that stacking selected shells, we can find their characteristic density profile. We have delineated a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا