ترغب بنشر مسار تعليمي؟ اضغط هنا

250 - P. Altmann , M. Kohda , C. Reichl 2015
Spin-orbit interaction (SOI) leads to spin precession about a momentum-dependent spin-orbit field. In a diffusive two-dimensional (2D) electron gas, the spin orientation at a given spatial position depends on which trajectory the electron travels to that position. In the transition to a 1D system with increasing lateral confinement, the spin orientation becomes more and more independent on the trajectory. It is predicted that a long-lived helical spin mode emerges. Here we visualize this transition experimentally in a GaAs quantum-well structure with isotropic SOI. Spatially resolved measurements show the formation of a helical mode already for non-quantized and non-ballistic channels. We find a spin-lifetime enhancement that is in excellent agreement with theoretical predictions. Lateral confinement of a 2D electron gas provides an easy-to-implement technique for achieving high spin lifetimes in the presence of strong SOI for a wide range of material systems.
We experimentally investigate the dynamics of a persistent spin helix in etched GaAs wire structures of 2 to 80 um width. Using magneto-optical Kerr rotation with high spatial resolution, we determine the lifetime of the spin helix. A few nanoseconds after locally injecting spin polarization into the wire, the polarization is strongly enhanced as compared to the two-dimensional case. This is mostly attributed to a transition to one-dimensional diffusion, strongly suppressing diffusive dilution of spin polarization. The intrinsic lifetime of the helical mode is only weakly increased, which indicates that the channel confinement can only partially suppress the cubic Dresselhaus spin-orbit interaction.
The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specific ally, the consequences of the finite spatial extension of the initial spin polarization is studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value $q_0$ of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width $w$ of the spin excitation reduces the spin polarization by a factor that approaches $exp(-q_0^2 w^2/2)$ at longer times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا