ترغب بنشر مسار تعليمي؟ اضغط هنا

Shifts from the expected nuclear magnetic resonance frequencies of antimony and bismuth donors in silicon of greater than a megahertz are observed in electrically detected magnetic resonance spectra. Defects created by ion implantation of the donors are discussed as the source of effective electric field gradients generating these shifts via quadrupole interaction with the nuclear spins. The experimental results are modeled quantitatively by molecular orbital theory for a coupled pair consisting of a donor and a spin-dependent recombination readout center.
Low-field (6-110 mT) magnetic resonance of bismuth (Bi) donors in silicon has been observed by monitoring the change in photoconductivity induced by spin dependent recombination. The spectra at various resonance frequencies show signal intensity dist ributions drastically different from that observed in conventional electron paramagnetic resonance, attributed to different recombination rates for the forty possible combinations of spin states of a pair of a Bi donor and a paramagnetic recombination center. An excellent tunability of Bi excitation energy for the future coupling with superconducting flux qubits at low fields has been demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا