ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the development of high-performance polarized $^3mathrm{He}$ targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized $^3mathrm{He}$ targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called $X$-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable $^3mathrm{He}$ polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the $mathrm{K}$-$^3mathrm{He}$ spin-exchange rate coefficient $k^mathrm{K}_mathrm{se} = left ( 7.46 pm 0.62 right )!times!10^{-20} mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.
160 - P. A. M. Dolph 2011
The dynamics of the movement of gas is discussed for two-chambered polarized He-3 target cells of the sort that have been used successfully for many electron scattering experiments. A detailed analysis is presented showing that diffusion is a limitin g factor in target performance, particularly as these targets are run at increasingly high luminosities. Measurements are presented on a new prototype polarized He-3 target cell in which the movement of gas is due largely to convection instead of diffusion. NMR tagging techniques have been used to visualize the gas flow, showing velocities along a cylindrically-shaped target of between 5-80 cm/min. The new target design addresses one of the principle obstacles to running polarized He-3 targets at substantially higher luminosities while simultaneously providing new flexibility in target geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا