ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first ultraviolet (UV) and multi-epoch optical spectroscopy of 30 Dor 016, a massive O2-type star on the periphery of 30 Doradus in the Large Magellanic Cloud. The UV data were obtained with the Cosmic Origins Spectrograph on the Hubbl e Space Telescope as part of the Servicing Mission Observatory Verification program after Servicing Mission 4, and reveal #016 to have one of the fastest stellar winds known. From analysis of the CIV 1548-51 doublet we find a terminal velocity, v_infty=3450 +/- 50km/s. Optical spectroscopy is from the VLT-FLAMES Tarantula Survey, from which we rule out a massive companion (with 2d<P<1yr) to a confidence of 98%. The radial velocity of #016 is offset from the systemic value by -85km/s, suggesting that the star has traveled the 120pc from the core of 30 Doradus as a runaway, ejected via dynamical interactions.
120 - P. A. Crowther 2010
We present VLT/FORS2 time-series spectroscopy of the Wolf-Rayet star #41 in the Sculptor group galaxy NGC 300. We confirm a physical association with NGC 300 X-1, since radial velocity variations of the HeII 4686 line indicate an orbital period of 32 .3 +/- 0.2 hr which agrees at the 2 sigma level with the X-ray period from Carpano et al. We measure a radial velocity semi-amplitude of 267 +/- 8 km/s, from which a mass function of 2.6 +/- 0.3 Msun is obtained. A revised spectroscopic mass for the WN-type companion of 26+7-5 Msun yields a black hole mass of 20 +/- 4 Msun for a preferred inclination of 60-75 deg. If the WR star provides half of the measured visual continuum flux, a reduced WR (black hole) mass of 15 +4 -2.5 Msun (14.5 +3 -2.5 Msun) would be inferred. As such, #41/NGC 300 X-1 represents only the second extragalactic Wolf-Rayet plus black-hole binary system, after IC 10 X-1. In addition, the compact object responsible for NGC 300 X-1 is the second highest stellar-mass black hole known to date, exceeded only by IC 10 X-1.
We present optical spectra of 14 emission-line stars in M33s giant HII regions NGC 592, NGC 595 and NGC 604: five of them are known WR stars, for which we present a better quality spectrogram, eight were WR candidates based on narrow-band imagery and one is a serendipitous discovery. Spectroscopy confirms the power of interference filter imagery to detect emission-line stars down to an equivalent width of about 5 A in crowded fields. We have also used archival HST/WFPC2 images to correctly identify emission-line stars in NGC 592 and NGC 588. emission-line stars in NGC 592 and NGC 588.
IC 10 X-1 is a bright (Lx=10^38 ergs/s) variable X-ray source in the local group starburst galaxy IC 10. The most plausible optical counterpart is a luminous Wolf-Rayet star, making IC 10 X-1 a rare example of a Wolf-Rayet X-ray binary. In this paper , we report on the detection of an X-ray orbital period for IC 10 X-1of 34.4 hours. This result, combined with a re-examination of optical spectra, allow us to determine a mass function for the system f(m)=7.8 Msun and a probable mass for the compact object of 24-36 Msun. If this analysis is correct, the compact object is the most massive known stellar black black hole. We further show that the observed period is inconsistent with Roche lobe overflow, suggesting that the binary is detached and the black hole is accreting the wind of the Wolf-Rayet star. The observed mass loss rate of [MAC92] 17-A is sufficient to power the X-ray luminosity of IC 10 X-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا