ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent light pulses of few to hundreds of femtoseconds (fs) duration have prolifically served the field of ultrafast phenomena. While fs pulses address mainly dynamics of nuclear motion in molecules or lattices in the gas, liquid or condensed matte r phase, the advent of attosecond pulses has in recent years provided direct experimental access to ultrafast electron dynamics. However, there are processes involving nuclear motion in molecules and in particular coupled electronic and nuclear motion that possess few fs or even sub-fs dynamics. In the present work we have succeeded in addressing simultaneously vibrational and electronic dynamics in molecular Hydrogen. Utilizing a broadband extreme-ultraviolet (XUV) continuum the entire, Frank-Condon allowed spectrum of H2 is coherently excited. Vibrational, electronic and ionization 1fs scale dynamics are subsequently tracked by means of XUV-pump-XUV-probe measurements. These reflect the intrinsic molecular behavior as the XUV probe pulse hardly distorts the molecular potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا