ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - C. M. Booth 2013
We present results from high-resolution hydrodynamic simulations of isolated SMC- and Milky Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading fac tors of up to ~10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with propto v_c^{1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to SN driven winds, where most of the acceleration happens violently in situ near star forming sites. In contrast, the CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T~10^4 K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.
We introduce the AGORA project, a comprehensive numerical study of well-resolved galaxies within the LCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ~100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of 8 galaxies with halo masses M_vir ~= 1e10, 1e11, 1e12, and 1e13 Msun at z=0 and two different (violent and quiescent) assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes will share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit, and validated against observations to verify that the solutions are robust - i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy metabolism. The proof-of-concept dark matter-only test of the formation of a galactic halo with a z=0 mass of M_vir ~= 1.7e11 Msun by 9 differe
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا