ترغب بنشر مسار تعليمي؟ اضغط هنا

It is widely recognized that nucleosynthetic output of the first, Population III supernovae was a catalyst defining the character of subsequent stellar generations. Most of the work on the earliest enrichment was carried out assuming that the first s tars were extremely massive and that the associated supernovae were unusually energetic, enough to completely unbind the baryons in the host cosmic minihalo and disperse the synthesized metals into the intergalactic medium. Recent work, however, suggests that the first stars may in fact have been somewhat less massive, with a characteristic mass scale of a few tens of solar masses. We present a cosmological simulation following the transport of the metals synthesized in a Population III supernova assuming that it had an energy of 1e51 ergs, compatible with standard Type II supernovae. A young supernova remnant is inserted in the first stars relic HII region in the free expansion phase and is followed for 40 Myr employing adaptive mesh refinement and Lagrangian tracer particle techniques. The supernova remnant remains partially trapped within the minihalo and the thin snowplow shell develops pronounced instability and fingering. Roughly half of the ejecta turn around and fall back toward the center of the halo, with 1% of the ejecta reaching the center in 30 kyr and 10% in 10 Myr. The average metallicity of the combined returning ejecta and the pristine filaments feeding into the halo center from the cosmic web is 0.001 - 0.01 Z_sun, but the two remain unmixed until accreting onto the central hydrostatic core that is unresolved at the end of the simulation. We conclude that if Population III stars had less extreme masses, they promptly enriched the host minihalos with metals and triggered Population II star formation.
84 - Orly Gnat 2010
I present computations of the integrated column densities produced in the post-shock cooling layers and in the radiative precursors of partially-cooled fast shocks as a function of the shock age. The results are applicable to the shock-heated warm/ho t intergalactic medium (WHIM) which is expected to be a major baryonic reservoir, and contain a large fraction of the so-called missing baryons. My computations indicate that readily observable amounts of intermediate and high ions, such as CIV, NV, and OVI are created in the precursors of young shocks, for which the shocked gas remains hot and difficult to observe. I suggest that such precursors may provide a way to identify and estimate the missing baryonic mass associated with the shocks. The absorption-line signatures predicted here may be used to construct ion-ratio diagrams, which will serve as diagnostics for the photoionized gas in the precursors. In my numerical models, the time-evolution of the shock structure, self-radiation, and associated metal-ion column densities are computed by a series of quasi-static models, each appropriate for a different shock age. The shock code used in this work calculates the nonequilibrium ionization and cooling, follows the radiative transfer of the shock self-radiation through the post-shock cooling layers, takes into account the resulting photoionization and heating rates, follows the dynamics of the cooling gas, and self-consistently computes the photoionization states in the precursor gas. I present a complete set of the age-dependent post-shock and precursor columns for all ionization states of the elements H, He, C, N, O, Ne, Mg, Si, S, and Fe, as functions of the shock velocity, gas metallicity, and magnetic field. I present my numerical results in convenient online tables.
Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor sys tem prior to the explosion, with significant implications for the nature of the supernova progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from Keck and the HET. The data span ~3 months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na D absorption lines strengthened significantly with time, indicating a total column density increase of ~2.5 x 10^12 cm^-2. The changes are most prominent after maximum light rather than at earlier times when the UV flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H&K lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two SNe exhibiting variable absorption, SN 2007le is not highly reddened (E_B-V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization models show that the data are consistent with a dense (10^7 cm^-3) cloud or clouds of gas located ~0.1 pc from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present tentative evidence for narrow Halpha emission associated with the SN, which will require followup observations at late times to confirm. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا