ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we develop mixed integer linear programming models to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under Bookbinder and Tans static-dynamic uncertainty strategy. Our models build on piecew ise linear upper and lower bounds of the first order loss function. We discuss different formulations of the stochastic lot sizing problem, in which the quality of service is captured by means of backorder penalty costs, non-stockout probability, or fill rate constraints. These models can be easily adapted to operate in settings in which unmet demand is backordered or lost. The proposed approach has a number of advantages with respect to existing methods in the literature: it enables seamless modelling of different variants of the above problem, which have been previously tackled via ad-hoc solution methods; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds. Our computational study demonstrates the effectiveness and flexibility of our models.
Tempelmeier (2007) considers the problem of computing replenishment cycle policy parameters under non-stationary stochastic demand and service level constraints. He analyses two possible service level measures: the minimum no stock-out probability pe r period ({alpha}-service level) and the so called fill rate, that is the fraction of demand satisfied immediately from stock on hand ({beta}-service level). For each of these possible measures, he presents a mixed integer programming (MIP) model to determine the optimal replenishment cycles and corresponding order-up-to levels minimizing the expected total setup and holding costs. His approach is essentially based on imposing service level dependent lower bounds on cycle order-up-to levels. In this note, we argue that Tempelmeiers strategy, in the {beta}-service level case, while being an interesting option for practitioners, does not comply with the standard definition of fill rate. By means of a simple numerical example we demonstrate that, as a consequence, his formulation might yield sub-optimal policies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا