ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^alpha, with 0<alpha<1. In particular, the gaps between successive eigenvalues decay as n^{alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|<=epsilon*|m-n|^{-p}max{m,n}^{-2gamma} for m!=n where epsilon>0, p>=1 and gamma=(1-alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and epsilon is small enough. More precisely, for any initial condition Psiin Dom(H^{1/2}), the diffusion of energy is bounded from above as <H>_Psi(t)=O(t^sigma) where sigma=alpha/(2ceil{p-1}gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^alpha+epsilon*v(theta,t) on L^2(S^1,dtheta) which was discussed earlier in the literature by Howland.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا