ترغب بنشر مسار تعليمي؟ اضغط هنا

219 - Olivier Marchal 2014
The purpose of this article is to study the eigenvalues $u_1^{, t}=e^{ittheta_1},dots,u_N^{,t}=e^{ittheta_N}$ of $U^t$ where $U$ is a large $Ntimes N$ random unitary matrix and $t>0$. In particular we are interested in the typical times $t$ for which all the eigenvalues are simultaneously close to $1$ in different ways thus corresponding to recurrence times in the issue of quantum measurements. Our strategy consists in rewriting the problem as a random matrix integral and use loop equations techniques to compute the first orders of the large $N$ asymptotic. We also connect the problem to the computation of a large Toeplitz determinant whose symbol is the characteristic function of several arc segments of the unit circle. In particular in the case of a single arc segment we recover Widoms formula. Eventually we explain why the first return time is expected to converge towards an exponential distribution when $N$ is large. Numeric simulations are provided along the paper to illustrate the results.
175 - Olivier Marchal 2014
The purpose of the article is to provide partial proofs for two conjectures given by Witte and Forrester in Moments of the Gaussian $beta$ Ensembles and the large $N$ expansion of the densities with the use of the topological recursion adapted for ge neral $beta$ Gaussian case. In particular, the paper uses a version at coinciding points that provides a simple proof for some of the coefficients involved in the conjecture. Additionally, we propose a generalized version of the conjectures for all correlation functions evaluated at coinciding points.
The goal of this article is to rederive the connection between the Painleve $5$ integrable system and the universal eigenvalues correlation functions of double-scaled hermitian matrix models, through the topological recursion method. More specificall y we prove, textbf{to all orders}, that the WKB asymptotic expansions of the $tau$-function as well as of determinantal formulas arising from the Painleve $5$ Lax pair are identical to the large $N$ double scaling asymptotic expansions of the partition function and correlation functions of any hermitian matrix model around a regular point in the bulk. In other words, we rederive the sine-law universal bulk asymptotic of large random matrices and provide an alternative perturbative proof of universality in the bulk with only algebraic methods. Eventually we exhibit the first orders of the series expansion up to $O(N^{-5})$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا