ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of g iant telescopes will find and characterize many planets in and near the habitable zones (HZs) of nearby stars. Radial velocity and transit searches indicate that such planets are common, but imaging them will require achieving extreme contrasts at very small angular separations, posing many challenges for adaptive optics (AO) system design. Giant planets in the HZ may even be within reach with the latest generation of high-contrast imagers for a handful of very nearby stars. Here we will review the definition of the HZ, and the characteristics of detectable planets there. We then review some of the ways that direct imaging in the HZ will be different from the typical exoplanet imaging survey today. Finally, we present preliminary results from our observations of the HZ of {alpha} Centauri A with the Magellan AO systems VisAO and Clio2 cameras.
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plan e wavefront control (speckle nulling). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAOs science capabilities.
69 - Olivier Guyon 2013
A scheme to optimally design a beam combiner is discussed for any pre-determined fixed geometry nulling interferometer aimed at detection and characterization of exoplanets with multiple telescopes or a single telescope (aperture masking). We show th at considerably higher order nulls can be achieved with 1-D interferometer geometries than possible with 2-D geometries with the same number of apertures. Any 1-D interferometer with N apertures can achieve a 2(N-1)-order null, while the order of the deepest null for a random 2-D aperture geometry interferometer is the order of the N-th term in the Taylor expansion of e^{i(x^2+y^2)} around x=0, y=0 (2nd order null for N=2,3; 4th order null for N=4,5,6). We also show that an optimal beam combiner for nulling interferometry relies only 0 or Pi phase shifts. Examples of nulling interferometer designs are shown to illustrate these findings.
58 - Olivier Guyon 2013
Two high performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagr aphic extinction of an on-axis point source. While the first concept, named Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, named Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-lambda/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope (GMT), Thirty Meter Telescope (TMT), the European Extremely Large Telescope (E-ELT) and the Large Binocular Telescope (LBT). Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.
73 - Olivier Guyon 2013
High-precision astrometry can identify exoplanets and measure their orbits and masses, while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-microarcsecond accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.
Astrometric detection and mass determination of Earth-mass exoplanets requires sub-microarcsec accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must however overc ome astrometric distortions which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the stars immediate surrounding. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars, and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 sq.deg field we adopt as a baseline design achieves 0.2 microarcsec single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-microarcsec astrometry without relying on the accurate pointing, external metrology or high stability hardware required with previously proposed high precision astrometry concepts.
63 - Olivier Guyon 2009
The Phase-Induced Amplitude Apodization (PIAA) coronagraph is a high performance coronagraph concept able to work at small angular separation with little loss in throughput. We present results obtained with a laboratory PIAA system including active w avefront control. The system has a 94.3% throughput (excluding coating losses) and operates in air with monochromatic light. Our testbed achieved a 2.27e-7 raw contrast between 1.65 lambda/D (inner working angle of the coronagraph configuration tested) and 4.4 lambda/D (outer working angle). Through careful calibration, we were able to separate this residual light into a dynamic coherent component (turbulence, vibrations) at 4.5e-8 contrast and a static incoherent component (ghosts and/or polarization missmatch) at 1.6e-7 contrast. Pointing errors are controlled at the 1e-3 lambda/D level using a dedicated low order wavefront sensor. While not sufficient for direct imaging of Earth-like planets from space, the 2.27e-7 raw contrast achieved already exceeds requirements for a ground-based Extreme Adaptive Optics system aimed at direct detection of more massive exoplanets. We show that over a 4hr long period, averaged wavefront errors have been controlled to the 3.5e-9 contrast level. This result is particularly encouraging for ground based Extreme-AO systems relying on long term stability and absence of static wavefront errors to recover planets much fainter than the fast boiling speckle halo.
High contrast coronagraphic imaging is a challenging task for telescopes with central obscurations and thick spider vanes, such as the Subaru Telescope. Our group is currently assembling an extreme AO bench designed as an upgrade for the newly commis sionned coronagraphic imager instrument HiCIAO, that addresses these difficulties. The so-called SCExAO system combines a high performance PIAA coronagraph to a MEMS-based wavefront control system that will be used in complement of the Subaru AO188 system. We present and demonstrate good performance of two key optical components that suppress the spider vanes, the central obscuration and apodize the beam for high contrast coronagraphy, while preserving the throughput and the angular resolution.
Significant advances in the discovery and characterization of the planetary systems of nearby stars can be accomplished with a moderate aperture high performance coronagraphic space mission that could be started in the next decade. Its observations w ould make significant progress in studying terrestrial planets in their habitable zones to giant planets and circumstellar debris disks, also informing the design of a more capable future mission. It is quite exciting that such fundamental exoplanet science can be done with relatively modest capabilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا