ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate optimization strategies to measure primordial non-Gaussianity with future spectroscopic surveys. We forecast measurements coming from the 3D galaxy power spectrum and compute constraints on primordial non-Gaussianity parameters f_NL an d n_NG. After studying the dependence on those parameters upon survey specifications such as redshift range, area, number density, we assume a reference mock survey and investigate the trade-off between number density and area surveyed. We then define the observational requirements to reach the detection of f_NL of order 1. Our results show that while power spectrum constraints on non-Gaussianity from future spectroscopic surveys can be competitive with current CMB limits, measurements from higher-order statistics will be needed to reach a sub unity precision in the measurements of the non-Gaussianity parameter f_NL.
The Planck CMB experiment has delivered the best constraints so far on primordial non-Gaussianity, ruling out early-Universe models of inflation that generate large non-Gaussianity. Although small improvements in the CMB constraints are expected, the next frontier of precision will come from future large-scale surveys of the galaxy distribution. The advantage of such surveys is that they can measure many more modes than the CMB -- in particular, forthcoming radio surveys with the SKA will cover huge volumes. Radio continuum surveys deliver the largest volumes, but with the disadvantage of no redshift information. In order to mitigate this, we use two additional observables. First, the integrated Sachs-Wolfe effect -- the cross-correlation of the radio number counts with the CMB temperature anisotropies -- helps to reduce systematics on the large scales that are sensitive to non-Gaussianity. Second, optical data allows for cross-identification in order to gain some redshift information. We show that, while the single redshift bin case can provide a sigma(fNL) ~ 20, and is therefore not competitive with current and future constraints on non-Gaussianity, a tomographic analysis could improve the constraints by an order of magnitude, even with only two redshift bins. A huge improvement is provided by the addition of high-redshift sources, so having cross-ID for high-z galaxies and an even higher-z radio tail is key to enabling very precise measurements of fNL. Our results show that SKA continuum surveys could provide constraints competitive with CMB and forthcoming optical surveys, potentially allowing a measurement of sigma(fNL) ~ 1 to be made. Moreover, these measurements would act as a useful check of results obtained with other probes at other redshift ranges with other methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا