ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent studies of the high-Tc superconductor La_(1.6-x)Nd_(0.4)Sr_(x)CuO_(4) (Nd-LSCO) have found a linear-T in-plane resistivity rho_(ab) and a logarithmic temperature dependence of the thermopower S / T at a hole doping p = 0.24, and a Fermi-surfac e reconstruction just below p = 0.24 [1, 2]. These are typical signatures of a quantum critical point (QCP). Here we report data on the c-axis resistivity rho_(c)(T) of Nd-LSCO measured as a function of temperature near this QCP, in a magnetic field large enough to entirely suppress superconductivity. Like rho_(ab), rho_(c) shows an upturn at low temperature, a signature of Fermi surface reconstruction caused by stripe order. Tracking the height of the upturn as it decreases with doping enables us to pin down the precise location of the QCP where stripe order ends, at p* = 0.235 +- 0.005. We propose that the temperature T_(rho) below which the upturn begins marks the onset of the pseudogap phase, found to be roughly twice as high as the stripe ordering temperature in this material.
The thermopower S of the high-Tc superconductor La(1.6-x)Nd(0.4)Sr(x)CuO(4) was measured as a function of temperature T near its pseudogap critical point, the critical hole doping p* where the pseudogap temperature T* goes to zero. Just above p*, S/T varies as ln(1/T) over a decade of temperature. Below p*, S/T undergoes a large increase below T*. As with the temperature dependence of the resistivity, which is linear just above p* and undergoes a large upturn below T*, these are typical signatures of a quantum phase transition. This suggests that p* is a quantum critical point below which some order sets in, causing a reconstruction of the Fermi surface, whose fluctuations are presumably responsible for the linear-T resistivity and logarithmic thermopower. We discuss the possibility that this order is the stripe order known to exist in this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا