ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micron ic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics.
80 - Olivier Arcizet 2011
A single Nitrogen Vacancy (NV) center hosted in a diamond nanocrystal is positioned at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems, i.e. a nanomechanical oscillator and a single quantum object. The dynamics of the nano-resonator is probed through time resolved nanocrystal fluorescence and photon correlation measurements, conveying the influence of a mechanical degree of freedom given to a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا