ترغب بنشر مسار تعليمي؟ اضغط هنا

The beginning of photoionization marks the transition between the post-Asymptotic Giant Branch (post-AGB) and planetary nebula (PN) phases of stars with masses < 8 M_sun. This critical phase is difficult to observe, as it lasts only a few decades. Th e combination of jets and magnetic fields, the key agents of PNe shaping, could give rise to synchrotron emission, but this has never been observed before in any PNe, since free-free emission from the ionized gas is expected to dominate its radio spectrum. In this paper we report radio continuum observations taken with the Australia Telescope Compact Array between 1 and 46 GHz of the young PN IRAS 15103-5754. Our observations in 2010-2011 show non-thermal emission compatible with synchrotron emission from electrons accelerated at a shock with spectral index $alpha simeq -0.54$. However, in 2012, the spectral index $alpha simeq -0.28$ is no longer compatible with synchrotron emission in these types of processes. Several hypothesis are discussed to explain this change. The more plausible ones are related to the presence of the newly photoionized region in this young PN: either energy loss of electrons due to Coulomb collisions with the plasma, or selective suppression of synchrotron radiation due to the Razin effect. We postulate that the observed flattening of non-thermal radio spectra could be a hallmark identifying the beginning of the PN phase.
We present Expanded Very Large Array (EVLA) water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of ~500 km/s, the second largest found in a Galactic maser, only surpassed by the high-mass star forming region W49N. Maser components are grouped into a blue and a redshifted cluster, separated by 0.12. Further mid-IR and radio data suggest that IRAS 18113-2503 is a post-AGB star, thus a new bona fide member of the rare class of water fountains. It is the evolved object with the largest total velocity spread in its water masers, and with the highest velocity dispersion within its red- and blue-shifted lobes (~170 km/s). The large total velocity range of emission probably indicates that IRAS 18113-2503 has the fastest jet among the known water fountain stars. On the other hand, the remarkably high velocity dispersion within each lobe may be interpreted in terms of shocks produced by an episode of mass ejection whose velocity increased up to very high values or, alternatively, by projection effects in a jet with a large opening angle and/or precessing motions.
38 - Olga Suarez 2008
We present Very Large Array (VLA) observations of the water maser emission towards IRAS 16552-3050. The maser emission shows a velocity spread of ~170 km/s, and a bipolar distribution with a separation between the red and blueshifted groups of ~0.08. These observations and the likely post-AGB nature of the source indicate that IRAS 16552-3050 can be considered as a member of the water fountain class of sources (evolved stars showing H2O maser emission with a velocity spread $ga$ 100 km/s, probably tracing collimated jets). The water maser emission in IRAS 16552-3050 does not seem to be associated with with any known optical counterpart. Moreover, this source does not have a near-IR 2MASS counterpart, as it happens in about half of the water fountains known. This suggests that these sources tend to be heavily obscured objects, probably with massive precursors ($ga 4-5$ M$_odot$). We suggest that the water maser emission in IRAS 16552-3050 could be tracing a rapidly precessing bipolar jet.
We present Very Large Array (VLA) observations of H2O and OH masers, as well as radio continuum emission at 1.3 and 18 cm toward three sources previously cataloged as planetary nebulae (PNe) and in which single-dish detections of H2O masers have been reported: IRAS 17443-2949, IRAS 17580-3111, and IRAS 18061-2505. Our goal was to unambiguously confirm their nature as water-maser-emitting PNe, a class of objects of which only two bona-fide members were previously known. We detected and mapped H2O maser emission toward all three sources, while OH maser emission is detected in IRAS 17443-2949 and IRAS 17580-3111 as well as in other two objects within the observed fields: IRAS 17442-2942 (unknown nature) and IRAS 17579-3121 (also cataloged as a possible PN). We found radio continuum emission associated only with IRAS 18061-2505. Our results confirm IRAS 18061-2505 as the third known case of a PN associated with H2O maser emission. The three known water-maser-emitting PNe have clear bipolar morphologies, which suggests that water maser emission in these objects is related to non-spherical mass-loss episodes. We speculate that these bipolar PNe would have ``water-fountain Asymptotic Giant Branch (AGB) and post-AGB stars as their precursors. A note of caution is given for other objects that have been classified as OHPNe (objects with both OH maser and radio continuum emission, that could be extremely young PNe) based on single-dish observations, since interferometric data of both OH masers and continuum are necessary for a proper identification as members of this class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا