ترغب بنشر مسار تعليمي؟ اضغط هنا

We study voltage response of nano-bridge based DC-SQUID fabricated on a Si_{3}N_{4} membrane. Such a configuration may help in reducing 1/f noise, which originates from substrate fluctuating defects. We find that the poor thermal coupling between the DC-SQUID and the substrate leads to strong hysteretic response of the SQUID, even though it is biased by an alternating current. In addition, when the DC-SQUID is biased near a threshold of spontaneous oscillations, the measured voltage has an intermittent pattern, which depends on the applied magnetic flux through the SQUID.
We study the metastable response of a highly hysteretic DC-SQUID made of a Niobium loop interrupted by two nano-bridges. We excite the SQUID with an alternating current and with direct magnetic flux, and find different stability zones forming diamond -like structures in the measured voltage across the SQUID. When such a SQUID is embedded in a transmission line resonator similar diamond structures are observed in the reflection pattern of the resonator. We have calculated the DC-SQUID stability diagram in the plane of the exciting control parameters, both analytically and numerically. In addition, we have obtained numerical simulations of the SQUID equations of motion, taking into account temperature variations and non-sinusoidal current-phase relation of the nano-bridges. Good agreement is found between experimental and theoretical results.
We study self-sustained oscillations (SO) in a Nb superconducting stripline resonators (SSR) integrated with a DC superconducting quantum interface devices (SQUID). We find that both the power threshold where these oscillations start and the oscillat ions frequency are periodic in the applied magnetic flux threading the SQUID loop. A theoretical model which attributes the SO to a thermal instability in the DC-SQUID yields a good agreement with the experimental results. This flux dependant nonlinearity may be used for quantum state reading of a qubit-SSR integrated device.
We experimentally and numerically study a NbN superconducting stripline resonator integrated with a microbridge. We find that the response of the system to monochromatic excitation exhibits intermittency, namely, noise-induced jumping between coexist ing steady-state and limit-cycle responses. A theoretical model that assumes piecewise linear dynamics yields partial agreement with the experimental findings.
We study thermal instability in NbN superconducting stripline resonators. The system exhibits extreme nonlinearity near a bifurcation, which separates a monostable zone and an astable one. The lifetime of the metastable state, which is locally stable in the monostable zone, is measure near the bifurcation and the results are compared with a theory. Near bifurcation, where the lifetime becomes relatively short, the system exhibits strong amplification of a weak input modulation signal. We find that the frequency bandwidth of this amplification mechanism is limited by the rate of thermal relaxation. When the frequency of the input modulation signal becomes comparable or larger than this rate the response of the system exhibits sub-harmonics of various orders.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا