ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition-metal heterostructures offer the fascinating possibility of controlling orbital degrees of freedom via strain. Here, we investigate theoretically the degree of orbital polarization that can be induced by epitaxial strain in LaNiO$_3$ films . Using combined electronic structure and dynamical mean-field theory methods we take into account both structural distortions and electron correlations and discuss their relative influence. We confirm that Hunds rule coupling tends to decrease the polarization and point out that this applies to both the $d^8underline{L}$ and $d^7$ local configurations of the Ni ions. Our calculations are in good agreement with recent experiments, which revealed sizable orbital polarization under tensile strain. We discuss why full orbital polarization is hard to achieve in this specific system and emphasize the general limitations that must be overcome to achieve this goal.
We present an efficient and accurate method for calculating electronic structure and related properties of random alloys with a proper treatment of local environment effects. The method is a generalization of the locally self-consistent Greens functi on (LSGF) technique for the exact muffin-tin orbital (EMTO) method. An alloy system in the calculations is represented by a supercell with a certain set of atomic distribution correlation functions. The Greens function for each atom in the supercell is obtained by embedding the cluster of neighboring atoms lying within a local interaction zone (LIZ) into an effective medium and solving the cluster Dyson equation exactly. The key ingredients of the method are locality, which makes it linearly scaling with the number of atoms in the supercell, and coherent-potential self-consistency of the effective medium, which results in a fast convergence of the electronic structure with respect to the LIZ size. To test the performance and accuracy of the method, we apply it to two systems: Fe-rich bcc-FeCr random alloy with and without a short-range order, and a Cr-impurity on the Fe surface. Both cases demonstrate the importance of taking into account the local environment effects for correct description of magnetic and bulk properties.
We present an explanation for the puzzling spectral and transport properties of layered cobaltates close to the band-insulator limit, which relies on the key effect of charge ordering. Blocking a significant fraction of the lattice sites deeply modif ies the electronic structure in a way that is shown to be quantitatively consistent with photoemission experiments. It also makes the system highly sensitive to interactions (especially to intersite ones), hence accounting for the strong correlations effects observed in this regime, such as the high effective mass and quasiparticle scattering rate. These conclusions are supported by a theoretical study of an extended Hubbard model with a realistic band structure on an effective kagom`e lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا