ترغب بنشر مسار تعليمي؟ اضغط هنا

We present additional observations to previous studies on the infrared (IR) renormalon in $SU(N)$ QCD(adj.), the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary condition. First, we show that, for arbitrary finite~$N$, a logarithmic factor in the vacuum polarization of the photon (the gauge boson associated with the Cartan generators of~$SU(N)$) disappears under the $S^1$~compactification. Since the IR renormalon is attributed to the presence of this logarithmic factor, it is concluded that there is no IR renormalon in this system with finite~$N$. This result generalizes the observation made by Anber and~Sulejmanpasic [J. High Energy Phys. textbf{1501}, 139 (2015)] for $N=2$ and~$3$ to arbitrary finite~$N$. Next, we point out that, although renormalon ambiguities do not appear through the Borel procedure in this system, an ambiguity appears in an alternative resummation procedure in which a resummed quantity is given by a momentum integration where the inverse of the vacuum polarization is included as the integrand. Such an ambiguity is caused by a simple zero at non-zero momentum of the vacuum polarization. Under the decompactification~$Rtoinfty$, where $R$ is the radius of the $S^1$, this ambiguity in the momentum integration smoothly reduces to the IR renormalon ambiguity in~$mathbb{R}^4$. We term this ambiguity in the momentum integration renormalon precursor. The emergence of the IR renormalon ambiguity in~$mathbb{R}^4$ under the decompactification can be naturally understood with this notion.
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS Y-breaking parameter~$deltaepsilon$. This quantity was vigorously studied recently by Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter~$deltaepsilon$ receives renormalization and, after this renormalization, the vacuum energy becomes ultraviolet finite. To the next-to-leading order of the $1/N$ expansion, we find that the vacuum energy normalized by the radius of the~$S^1$, $R$, $RE(deltaepsilon)$ behaves as inverse powers of~$Lambda R$ for~$Lambda R$ small, where $Lambda$ is the dynamical scale. Since $Lambda$ is related to the renormalized t~Hooft coupling~$lambda_R$ as~$Lambdasim e^{-2pi/lambda_R}$, to the order of the $1/N$ expansion we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak coupling expansion in~$lambda_R$.
We point out that the location of renormalon singularities in theory on a circle-compactified spacetime $mathbb{R}^{d-1} times S^1$ (with a small radius $R Lambda ll 1$) can differ from that on the non-compactified spacetime $mathbb{R}^d$. We argue t his under the following assumptions, which are often realized in large $N$ theories with twisted boundary conditions: (i) a loop integrand of a renormalon diagram is volume independent, i.e. it is not modified by the compactification, and (ii) the loop momentum variable along the $S^1$ direction is not associated with the twisted boundary conditions and takes the values $n/R$ with integer $n$. We find that the Borel singularity is generally shifted by $-1/2$ in the Borel $u$-plane, where the renormalon ambiguity of $mathcal{O}(Lambda^k)$ is changed to $mathcal{O}(Lambda^{k-1}/R)$ due to the circle compactification $mathbb{R}^d to mathbb{R}^{d-1} times S^1$. The result is general for any dimension $d$ and is independent of details of the quantities under consideration. As an example, we study the $mathbb{C} P^{N-1}$ model on $mathbb{R} times S^1$ with $mathbb{Z}_N$ twisted boundary conditions in the large $N$ limit.
We study the infrared renormalon in the gluon condensate in the $SU(N)$ gauge theory with $n_W$-flavor adjoint Weyl fermions (QCD(adj.)) on~$mathbb{R}^3times S^1$ with the $mathbb{Z}_N$ twisted boundary conditions. We rely on the so-called large-$bet a_0$ approximation as a conventional tool to analyze the renormalon, in which only Feynman diagrams that dominate in the large-$n_W$ limit are considered while the coefficient of the vacuum polarization is set by hand to the one-loop beta function~$beta_0=11/3-2n_W/3$. In the large~$N$ limit within the large-$beta_0$ approximation, the W-boson, which acquires the twisted Kaluza--Klein momentum, produces the renormalon ambiguity corresponding to the Borel singularity at~$u=2$. This provides an example that the system in the compactified space~$mathbb{R}^3times S^1$ possesses the renormalon ambiguity identical to that in the uncompactified space~$mathbb{R}^4$. We also discuss the subtle issue that the location of the Borel singularity can change depending on the order of two necessary operations.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b oundary conditions. In our large~$N$ limit, the combination $Lambda R$, where $Lambda$ is the dynamical scale and $R$~is the $S^1$ radius, is kept fixed (we set $Lambda Rll1$ so that the perturbative expansion with respect to the coupling constant at the mass scale~$1/R$ is meaningful). We extract the perturbative part from the large-$N$ expression of the gluon condensate and obtain the corresponding Borel transform~$B(u)$. For~$mathbb{R}times S^1$, we find that the Borel singularity at~$u=2$, which exists in the system on the uncompactified~$mathbb{R}^2$ and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emph{emerges/} at~$u=3/2$ for the compactified space~$mathbb{R}times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because $u=3/2$ is not dividable by the minimal bion action. It appears that our observation for the system on~$mathbb{R}times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.
In K.~Hieda, A.~Kasai, H.~Makino, and H.~Suzuki, Prog. Theor. Exp. Phys. textbf{2017}, 063B03 (2017), a properly normalized supercurrent in the four-dimensional (4D) $mathcal{N}=1$ super Yang--Mills theory (SYM) that works within on-mass-shell correl ation functions of gauge-invariant operators is expressed in a regularization-independent manner by employing the gradient flow. In the present paper, this construction is extended to the supercurrent in the 4D $mathcal{N}=2$ SYM. The so-constructed supercurrent will be useful, for instance, for fine tuning of lattice parameters toward the supersymmetric continuum limit in future lattice simulations of the 4D $mathcal{N}=2$ SYM.
It is believed that the two-dimensional massless $mathcal{N}=2$ Wess--Zumino model becomes the $mathcal{N}=2$ superconformal field theory (SCFT) in the infrared (IR) limit. We examine this theoretical conjecture of the Landau--Ginzburg (LG) descripti on of the $mathcal{N}=2$ SCFT by numerical simulations on the basis of a supersymmetric-invariant momentum-cutoff regularization. We study a single supermultiplet with cubic and quartic superpotentials. From two-point correlation functions in the IR region, we measure the scaling dimension and the central charge, which are consistent with the conjectured LG description of the $A_2$ and $A_3$ minimal models, respectively. Our result supports the theoretical conjecture and, at the same time, indicates a possible computational method of correlation functions in the $mathcal{N}=2$ SCFT from the LG description.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا