ترغب بنشر مسار تعليمي؟ اضغط هنا

Within the framework of the Helfrich elastic theory of membranes and of differential geometry we study the possible instabilities of spherical vesicles towards double bubbles. We find that not only temperature, but also magnetic fields can induce top ological transformations between spherical vesicles and double bubbles and provide a phase diagram for the equilibrium shapes.
We present numerical simulations of a model of cellulose consisting of long stiff rods, representing cellulose microfibrils, connected by stretchable crosslinks, representing xyloglucan molecules, hydrogen bonded to the microfibrils. Within a broad r ange of temperature the competing interactions in the resulting network give rise to a slow glassy dynamics. In particular, the structural relaxation described by orientational correlation functions shows a logarithmic time dependence. The glassy dynamics is found to be due to the frustration introduced by the network of xyloglucan molecules. Weakening of interactions between rod and xyloglucan molecules results in a more marked reorientation of cellulose microfibrils, suggesting a possible mechanism to modify the dynamics of the plant cell wall.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا