ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (vrot) for components of 114 spectroscopic binaries in 30 Doradus. The vrot values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. vrot calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall vrot distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at $vrot < 200$ kms) and a shoulder at intermediate velocities ($200 < vrot < 300$ kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at $vrot sim$100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, $v_esin i$, of $sim$330 O-type objects, i.e. $sim$210 spectroscopic single stars and $sim$110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the $v_esin i$ distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100,$rm{km s^{-1}}$. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300,$rm{km s^{-1}}$, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا