ترغب بنشر مسار تعليمي؟ اضغط هنا

159 - O.C. de Jager 2009
In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field s trength with time. By normalising a two component particle injection spectrum (which can reproduce the radio and X-ray components) at the pulsar wind termination shock to the time dependent spindown power, and keeping track with losses since pulsar/PWN/SNR birth, we show that the average field strength decreases with time as $t^{-1.3}$, so that the synchrotron flux decreases, whereas the IC gamma-ray flux increases, until most of the spindown power has been dumped into the PWN. Eventually adiabatic and IC losses will also terminate the TeV visibility and then eventually the GeV visibility.
In this paper we show that the high energy $gamma$-ray flux in the GeV domain from mature pulsar wind nebulae (PWN) scales as the change in rotational kinetic energy $I(Omega_0^2-Omega^2)/2$ since birth, rather than the present day spindown power $IO megadot{Omega}$. This finding holds as long as the lifetime of inverse Compton emitting electrons exceeds the age of the system. For a typical $gamma^{-2}$ electron spectrum, the predicted flux depends mostly on the pulsar birth period, conversion efficiency of spindown power to relativistic electrons and distance to the PWN, so that first order estimates of the birth period can be assessed from {it GLAST/LAT} observations of PWN. For this purpose we derive an analytical expression. The associated (``uncooled) photon spectral index in the GeV domain is expected to cluster around $sim 1.5$, which is bounded at low energies by an intrinsic spectral break, and at higher energies by a second spectral break where the photon index steepens to $sim 2$ due to radiation losses. Mature PWN are expected to have expanded to sizes larger than currently known PWN, resulting in relatively low magnetic energy densities and hence survival of GeV inverse Compton emitting electrons. Whereas such a PWN may be radio and X-ray quiet in synchrotron radiation, it may still be detectable as a {it GLAST/LAT} source as a result of the relic electrons in the PWN.
The deeper and more extended survey of the central parts of the Galactic Plane by H.E.S.S. during 2005-2007 has revealed a number of new point-like, as well as, extended sources. Two point-like sources can be associated to two remarkable objects arou nd Crab-like young and energetic pulsars in our Galaxy: G21.5-0.9 and Kes 75. The characteristics of each of the sources are presented and possible interpretations are briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا