ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the chemical properties of a set of solar vicinity stars, and show that the small dispersion in abundances of alpha-elements at all ages provides evidence that the SFH has been uniform throughout the thick disk. In the context of long time scale infall models, we suggest that this result points either to a limited dependence of the gas accretion on the Galactic radius in the inner disk (R<10 kpc), or to a decoupling of the accretion history and star formation history due to other processes governing the ISM in the early disk, suggesting that infall cannot be a determining parameter of the chemical evolution at these epochs. We argue however that these results and other recent observational constraints -- namely the lack of radial metallicity gradient and the non-evolving scale length of the thick disk -- are better explained if the early disk is viewed as a pre-assembled gaseous system, with most of the gas settled before significant star formation took place -- formally the equivalent of a closed-box model. In any case, these results point to a weak, or non-existent inside-out formation history in the thick disk, or in the first 3-5 Gyr of the formation of the Galaxy. We argue however that the growing importance of an external disk whose chemical properties are distinct from those of the inner disk would give the impression of an inside-out growth process when seen through snapshots at different epochs. However, the progressive, continuous process usually invoked may not have actually existed in the Milky Way.
We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R<7-8kpc) and outer (R>9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as the thin disc in the remaining 8 Gyr. Our results suggest that a closed box model is able to fit all the available constraints in the inner disc. A closed box system is qualitatively equivalent to a regime where the accretion rate, at high redshift, maintains a high gas fraction in the inner disc. In such conditions, the SFR is mainly governed by the high turbulence of the ISM. By z~1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas not consumed during the thick disc phase, and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z~2, about 2 Gyr before the onset of the thin disc formation in the inner disc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا