ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomically thin crystals have recently been the focus of attention in particular after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class the chemically derived graphenes have attracted tremendo us interest. It was shown that although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane (CH), fluorographene (CF) and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview, surveys structural, electronic, magnetic, vibrational and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well.
The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp3 bonded derivatives of graphene have different phonon dispersion relations and phonon density of states as expected from the d ifferent masses associated with the attached atoms fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds.
Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various c onfigurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A new configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
64 - O. Leenaerts , B. Partoens , 2008
We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.
82 - O. Leenaerts , B. Partoens , 2008
We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a g raphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes.
Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and or ientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e. charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا