ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear beta decay rates are an essential ingredient in simulations of the astrophysical r-process. Most of these rates still rely on theoretical modeling. However, modern radioactive ion-beam facilities have allowed to measure beta half lives of som e nuclei on or close to the r-process path. These data indicate that r-process half lives are in general shorter than anticipated in the standard theoretical predictions based on the Finite Range Droplet Model (FRDM). The data have also served as important constraints for improved predictions of half lives based on continuum QRPA calculations on top of the energy-density functional theory. Although these calculations are yet limited to spherical nuclei, they include the important r-process waiting point nuclei close to and at the neutron magic numbers $N=50, 82$ and 126. We have studied the impact of these new experimental and theoretical half lives on r-process nucleosynthesis within the two astrophysical sites currently favored for the r process: the neutrino-driven wind from the freshly born neutron star in a supernova explosion and the ejecta of the merger of two neutron stars. We find that the, in general, shorter beta decay rates have several important effects on the dynamics of r-process nucleosynthesis. At first, the matter flow overcomes the waiting point nuclei faster enhancing matter transport to heavier nuclei. Secondly, the shorter half lives result also in a faster consumption of neutrons resulting in important changes of the conditions at freeze-out with consequences for the final r-process abundances. Besides these global effects on the r-process dynamics, the new half lives also lead to some local changes in the abundance distributions.
Recently, crust cooling times have been measured for neutron stars after extended outbursts. These observations are very sensitive to the thermal conductivity $kappa$ of the crust and strongly suggest that $kappa$ is large. We perform molecular dynam ics simulations of the structure of the crust of an accreting neutron star using a complex composition that includes many impurities. The composition comes from simulations of rapid proton capture nucleosynthesys followed by electron captures. We find that the thermal conductivity is reduced by impurity scattering. In addition, we find phase separation. Some impurities with low atomic number $Z$ are concentrated in a subregion of the simulation volume. For our composition, the solid crust must separate into regions of different compositions. This could lead to an asymmetric star with a quadrupole deformation that radiates gravitational waves. Observations of crust cooling can constrain impurity concentrations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا