ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - D. Cseh , N. A. Webb , O. Godet 2014
We present follow-up radio observations of ESO 243-49 HLX-1 from 2012 using the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). We report the detection of radio emission at the location of HLX-1 during its hard X-ray state using the ATCA. Assuming that the `Fundamental Plane of accreting black holes is applicable, we provide an independent estimate of the black hole mass of $M_{rm{BH}}leq2.8^{+7.5}_{-2.1} times 10^{6}$ M$_{odot}$ at 90% confidence. However, we argue that the detected radio emission is likely to be Doppler-boosted and our mass estimate is an upper limit. We discuss other possible origins of the radio emission such as being due to a radio nebula, star formation, or later interaction of the flares with the large-scale environment. None of these were found adequate. The VLA observations were carried out during the X-ray outburst. However, no new radio flare was detected, possibly due to a sparse time sampling. The deepest, combined VLA data suggests a variable radio source and we briefly discuss the properties of the previously detected flares and compare them with microquasars and active galactic nuclei.
After showing four outbursts spaced by $sim 1$ year from 2009 to 2012, the hyper luminous X-ray source ESO 243-49 HLX-1, currently the best intermediate mass black hole (IMBH) candidate, showed an outburst in 2013 delayed by more than a month. In Las ota et al. (2011), we proposed that the X-ray lightcurve is the result of enhanced mass transfer episodes at periapsis from a donor star orbiting the IMBH in a highly eccentric orbit. In this scenario, the delay can be explained only if the orbital parameters can change suddenly from orbit to orbit. To investigate this, we ran Newtonian smooth particle hydrodynamical simulations starting with an incoming donor approaching an IMBH on a parabolic orbit. We survey a large parameter space by varying the star-to-BH mass ratio ($10^{-5}-10^{-3}$) and the periapsis separation $r_p$ from 2.2 to $2.7~r_t$ with $r_t$, the tidal radius. To model the donor, we choose several polytropes ($Gamma = 5/2,~n=3/2$; $Gamma=3/2,~n=2$; $Gamma=5/3,~n=2$ & $n=3$). Once the system is formed, the orbital period decreases until reaching a minimum. Then, the period tends to increase over several periapsis passages due to tidal effects and increasing mass transfer, leading ultimately to the ejection of the donor. The development of stochastic fluctuations inside the donor could lead to sudden changes in the orbital period from orbit to orbit with the appropriate order of magnitude of what has been observed for HLX-1. Given the constraints on the BH mass ($M_{rm BH} > 10^4~M_odot$) and assuming that HLX-1 is currently near a minimum in period of $sim 1$ yr, the donor has to be a white dwarf or a stripped giant core. We predict that if HLX-1 is indeed emerging from a minimum in orbital period, then the period would generally increase with each passage, although substantial stochastic fluctuations can be superposed on this trend.
We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect $sim 200$ GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 $4times 4~mathrm{mm}^2$ and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8x4 matrices read by a low-noise ASIC, forming elementary modules called XRDPIX. In this paper, we also present our current efforts to investigate the performance of these modules with their front-end electronics when illuminated by charged particles and/or photons using radioactive sources. All measurements are made in different instrument configurations in vacuum and with a nominal in-flight detector temperature of $-20^circ$C. This work will enable us to choose the in-flight configuration that will make the best compromise between the science performance and the in-flight operability of ECLAIRs. We will show some highlights of this work.
We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large Telescope (VLT), V- and R-band) observations of the intermediate mass black hole candidate ESO 243-49 HLX-1 before and during the 2012 outburst. We show that the V-band mag nitudes vary with time, thus proving that a portion of the observed emission originates in the accretion disk. Using the first quiescent optical observations of HLX-1, we show that the stellar population surrounding HLX-1 is fainter than V~25.1 and R~24.2. We show that the optical emission may increase before the X-ray emission consistent with the scenario proposed by Lasota et al. (2011) in which the regular outbursts could be related to the passage at periastron of a star circling the intermediate mass black hole in an eccentric orbit, which triggers mass transfer into a quasi-permanent accretion disk around the black hole. Further, if there is indeed a delay in the X-ray emission we estimate the mass-transfer delivery radius to be ~1e11 cm.
112 - O. Godet 2009
For several decades now, wide-field coded mask cameras have been used with success to localise Gamma-ray bursts (GRBs). In these instruments, the event count rate is dominated by the photon background due to their large field of view and large effect ive area. It is therefore essential to estimate the instrument background expected in orbit during the early phases of the instrument design in order to optimise the scientific performances of the mission. We present here a detailed study of the instrument background and sensitivity of the coded-mask camera for X- and Gamma-rays (CXG) to be used in the detection and localisation of high-redshift GRBs on-board the international GRB mission SVOM. To compute the background spectrum, a Monte-Carlo approach was used to simulate the primary and secondary interactions between particles from the main components of the space environment that SVOM will encounter along its Low Earth Orbit (LEO) (with an altitude of 600 km and an inclination of ~ 30 deg) and the body of the CXG. We consider the detailed mass model of the CXG in its latest design. According to our results, i) the design of the passive shield of the camera ensures that in the 4-50 keV imaging band the cosmic X-Gamma-ray background is dominant whilst the internal background should start to become dominant above 70-90 keV; ii) the current camera design ensures that the CXG camera will be more sensitive to high-redshift GRBs than the Swift Burst Alert Telescope thanks to a low-energy threshold of 4 keV.
508 - O. Godet 2008
(Abbreviated) We show that the XRT spectral response calibration was complicated by various energy offsets in photon counting (PC) and windowed timing (WT) modes related to the way the CCD is operated in orbit (variation in temperature during observa tions, contamination by optical light from the sunlit Earth and increase in charge transfer inefficiency). We describe how these effects can be corrected for in the ground processing software. We show that the low-energy response, the redistribution in spectra of absorbed sources, and the modelling of the line profile have been significantly improved since launch by introducing empirical corrections in our code when it was not possible to use a physical description. We note that the increase in CTI became noticeable in June 2006 (i.e. 14 months after launch), but the evidence of a more serious degradation in spectroscopic performance (line broadening and change in the low-energy response) due to large charge traps (i.e. faults in the Si crystal) became more significant after March 2007. We describe efforts to handle such changes in the spectral response. Finally, we show that the commanded increase in the substrate voltage from 0 to 6V on 2007 August 30 reduced the dark current, enabling the collection of useful science data at higher CCD temperature (up to -50C). We also briefly describe the plan to recalibrate the XRT response files at this new voltage.
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا