ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - O. Cohen , Y. Ma , J.J. Drake 2015
We study the interaction between the atmospheres of Venus-like, non-magnetized exoplanets orbiting an M-dwarf star, and the stellar wind using a multi-species Magnetohydrodynaic (MHD) model. We focus our investigation on the effect of enhanced stella r wind and enhanced EUV flux as the planetary distance from the star decreases. Our simulations reveal different topologies of the planetary space environment for sub- and super-Alfvenic stellar wind conditions, which could lead to dynamic energy deposition in to the atmosphere during the transition along the planetary orbit. We find that the stellar wind penetration for non-magnetized planets is very deep, up to a few hundreds of kilometers. We estimate a lower limit for the atmospheric mass-loss rate and find that it is insignificant over the lifetime of the planet. However, we predict that when accounting for atmospheric ion acceleration, a significant amount of the planetary atmosphere could be eroded over the course of a billion years.
157 - O. Cohen , J.J. Drake , A. Glocer 2014
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic (MHD) models. The stellar wind solution is used to drive a model for the planetary magn etosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvenic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvenic sectors, while no bow shock forms in the sub-Alfvenic sectors. The planets reside most of the time in the sub-Alfvenic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the planetary interaction with the stellar wind. For the steady-state solution, the heating is about 0.1-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport.
We study the influence of the spatial resolution on scales of $5deg$ and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driv en by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high and low resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is properly resolved.
86 - O. Cohen , M. Ovadia , 2011
Current-voltage characteristics in the insulator bordering superconductivity in disordered thin films exhibit current jumps of several orders of magnitude due to the development of a thermally bistable electronic state at very low temperatures. In th is high-resolution study we find that the jumps can be composed of many (up to 100) smaller jumps that appear to be random. This indicates that inhomogeneity develops near the transition to the insulator and that the current breakdown proceed via percolative paths spanning from one electrode to the other.
We present a three-dimensional simulation of the corona of an FK Com-type rapidly rotating G giant using a magnetohydrodynamic model that was originally developed for the solar corona in order to capture the more realistic, non-potential coronal stru cture. We drive the simulation with surface maps for the radial magnetic field obtained from a stellar dynamo model of the FK Com system. This enables us to obtain the coronal structure for different field topologies representing different periods of time. We find that the corona of such an FK Com-like star, including the large scale coronal loops, is dominated by a strong toroidal component of the magnetic field. This is a result of part of the field being dragged by the radial outflow, while the other part remains attached to the rapidly rotating stellar surface. This tangling of the magnetic field,in addition to a reduction in the radial flow component, leads to a flattening of the gas density profile with distance in the inner part of the corona. The three-dimensional simulation provides a global view of the coronal structure. Some aspects of the results, such as the toroidal wrapping of the magnetic field, should also be applicable to coronae on fast rotators in general, which our study shows can be considerably different from the well-studied and well-observed solar corona. Studying the global structure of such coronae should also lead to a better understanding of their related stellar processes, such as flares and coronal mass ejections, and in particular, should lead to an improved understanding of mass and angular momentum loss from such systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا