ترغب بنشر مسار تعليمي؟ اضغط هنا

By combining Hubble Space Telescope (HST) and ground based optical and near-infrared photometric samples, we derive the RGB tip absolute magnitude of 22 galactic globular clusters (GGCs). The effects of varying the distance and the metallicity scales are also investigated. Then we compare the observed tip luminosities with those predicted by state-of-the-art stellar models that include the energy-loss due to the axion production in the degenerate core of red giant stars. We find that theoretical predictions including only the energy-loss by plasma neutrinos are, in general, in good agreement with the observed tip bolometric magnitudes, even though the latter are about 0.04 mag brighter, on the average. This small shift may be the result of systematic errors affecting the evaluation of the RGB tip bolometric magnitudes or, alternatively, it could be ascribed to an axion-electron coupling causing a non-negligible thermal production of axions. In order to estimate the strength of this possible axion sink, we perform a cumulative likelihood analysis using the RGB tips of the whole set of 22 GGCs. All the possible source of uncertainties affecting both the measured bolometric magnitudes and the corresponding theoretical predictions are carefully considered. As a result, we find that the value of the axion-electron coupling parameter that maximizes the likelihood probability is gae/10^13=0.60(+0.32;-0.58). This hint is valid, however, if the dominant energy sinks operating in the core of red giant stars are standard neutrinos and axions coupled with electrons. Any additional energy-loss process, not included in the stellar models, would reduce such a hint. Nevertheless, we find that values gae/10^13 > 1.48 can be excluded with a 95% of confidence.
Nuclear astrophysics, the union of nuclear physics and astronomy, went through an impressive expansion during the last twenty years. This could be achieved thanks to milestone improvements in astronomical observations, cross section measurements, pow erful computer simulations and much refined stellar models. Italian groups are giving quite important contributions to every domain of nuclear astrophysics, sometimes being the leaders of worldwide unique experiments. In this paper we will discuss the astrophysical scenarios where nuclear astrophysics plays a key role and we will provide detailed descriptions of the present and future of the experiments on nuclear astrophysics which belong to the scientific programme of INFN (the National Institute for Nuclear Physics in Italy).
Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O incr eases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than 1.5 M_solar. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O . Aims. Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p,alpha)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods. We computed stellar models of initial mass between 1 and 20 M_solar and compared the results obtained by adopting the revised rate of the 17O(p,alpha)14N to those obtained using previous rates. Results. The post-first dredge up 16O/17O ratios are about 20% larger than previously obtained. Negligible variations are found in the case of the second and the third dredge up. In spite of the larger 17O(p,alpha)14N rate, we confirm previous claims that an extra-mixing process on the red giant branch, commonly invoked to explain the low carbon isotopic ratio observed in bright low-mass giant stars, marginally affects the 16O/17O ratio. Possible effects on AGB extra-mixing episodes are also discussed. As a whole, a substantial reduction of 17O stellar yields is found. In particular, the net yield of stars with mass ranging between 2 and 20 M_solar is 15 to 40% smaller than previously estimated. Conclusions. The revision of the 17O(p,alpha)14N rate has a major impact on the interpretation of the 16O/17O observed in evolved giants, in stardust grains and on the 17O stellar yields.
C and O isotopic ratios are reported for a sample of 46 Mira and SRa-type variable AGB stars. Vibration-rotation 1st and 2nd overtone CO lines in 1.5 to 2.5 $mu$m spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comp arisons with previous measurements for individual stars and with various samples of evolved stars are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of the M stars had main sequence masses < 2 Msun and have not experienced sizable third dredge-up episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the 6 C stars in the sample three have clear evidence relating their origin to the occurrence of the third dredge-up. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars show a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2 to 2 Msun stars after the 1st dredge up. On the contrary, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This occurrence is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extramixing. This occurrence may indicate that the extramixing process is hampered at high metallicity or, equivalently, favored at low metallicity. Similar to O-rich grains no star in our sample shows evidence of HBB, expected for massive AGB stars.
We present a new set of models for intermediate mass AGB stars (4.0, 5.0 and, 6.0 Msun) at different metallicities (-2.15<=Fe/H]<=+0.15). This integrates the existing set of models for low mass AGB stars (1.3<=M/M<=3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the Main Sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. The latter is due to the fact that the interpulse phases are short and, then, Thermal Pulses are weak. Moreover, the high temperature at the base of the convective envelope prevents it to deeply penetrate the radiative underlying layers. Depending on the initial stellar mass, the heavy elements nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the ean~reaction, which is efficiently activated during Thermal Pulses. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the weight that intermediate mass models have on the carbon stars luminosity function. Finally, we present the upgrade of the FRUITY web interface, now also including the physical quantities of the TP-AGB phase of all the models included in the database (ph-FRUITY).
We present and show the features of the FRUITY database, an interactive web-based interface devoted to the nucleosynthesis in AGB stars. We describe the current available set of AGB models (largely expanded with respect to the original one) with mass es in the range 1.3<=M/M_SUN<=3.0 and metallicities -2.15<=[Fe/H]<=+0.15. We illustrate the details of our s-process surface distributions and we compare our results to observations. Moreover, we introduce a new set of models where the effects of rotation are taken into account. Finally, we shortly describe next planned upgrades.
We provide an updated discussion of the sample of CEMP-s and CEMP-s/r stars collected from the literature. Observations are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) stars presented by Bisterzo et al. (2010 , 2011, 2012), in the light of the most recent spectroscopic results.
Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the $^{25}$Mg(p,$gamma$)$^{26}$Al reaction affect the production of radioactive $^{26}$Al$^{ gs}$ as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at LUNA, we provide revised rates of the $^{25}$Mg(p,$gamma$)$^{26}$Al$^{gs}$ and the $^{25}$Mg(p,$gamma$)$^{26}$Al$^{m}$ reactions with corresponding uncertainties. In the temperature range 50 to 150 MK, the new recommended rate of the $^{26}$Al$^{m}$ production is up to 5 times higher than previously assumed. In addition, at T$=100$ MK, the revised total reaction rate is a factor of 2 higher. Note that this is the range of temperature at which the Mg-Al cycle operates in an H-burning zone. The effects of this revision are discussed. Due to the significantly larger $^{25}$Mg(p,$gamma$)$^{26}$Al$^{m}$ rate, the estimated production of $^{26}$Al$^{gs}$ in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic $^{26}$Al budget. Similarly, we show that the AGB extra-mixing scenario does not appear able to explain the most extreme values of $^{26}$Al/$^{27}$Al, i.e. $>10^{-2}$, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of a self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster stars.
We provide an individual analysis of 94 carbon enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a bina ry system from a more massive companion evolving faster toward the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Paper I. Several CEMP-s stars show an enhancement in both s and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r stars, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by Supernovae pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Paper II. We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by the [La/Eu] ratio. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provide information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths is required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems ...
High-resolution spectroscopic observations of a hundred metal-poor Carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) presented in Paper I (M = 1.3, 1.4, 1.5, 2 Msun, -3.6 < [Fe/H] < -1.5). The s-process enhancement detected in these objects is associated to binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesising in the inner He-intershell the s-elements, which are partly dredged-up to the surface during the third dredge-up (TDU) episode. The secondary observed low mass companion became CEMP-s by mass transfer of C and s-rich material from the primary AGB. We analyse the light elements as C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = <Y, Zr> is the the light-s peak at N = 50 and hs = <La, Nd, Sm> the heavy-s peak at N = 82), and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] > 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, .... . Detailed analyses for individual stars will be provided in Paper III.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا