ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining first-principles density functional theory simulations with IR and Raman experiments, we determine the frequency shift of vibrational modes of CO2 when physiadsorbed in the iso-structural metal organic framework materials Mg-MOF74 and Zn-MO F74. Surprisingly, we find that the resulting change in shift is rather different for these two systems and we elucidate possible reasons. We explicitly consider three factors responsible for the frequency shift through physiabsorption, namely (i) the change in the molecule length, (ii) the asymmetric distortion of the CO$_2$ molecule, and (iii) the direct influence of the metal center. The influence of each factor is evaluated separately through different geometry considerations, providing a fundamental understanding of the frequency shifts observed experimentally.
Hydrogen adsorption by the metal organic framework (MOF) structure Zn2(BDC)2(TED) is investigated using a combination of experimental and theoretical methods. By use of the nonempirical van der Waals density-functional (vdW-DF) approach, it is found that the locus of deepest H2 binding positions lies within two types of narrow channel. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms and heat of adsorption data. Calculations of the shift of the H-H stretch frequency when adsorbed in the MOF give a value of approximately -30 cm-1 at the strongest binding point in each of the two channels. Ambient temperature infrared absorption spectroscopy measurements give a hydrogen peak centered at 4120 cm-1, implying a shift consistent with the theoretical calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا