ترغب بنشر مسار تعليمي؟ اضغط هنا

A Markovian lattice model for photoreceptor cells is introduced to describe the growth of mosaic patterns on fish retina. The radial stripe pattern observed in wild-type zebrafish is shown to be selected naturally during the retina growth, against th e geometrically equivalent, circular stripe pattern. The mechanism of such dynamical pattern selection is clarified on the basis of both numerical simulations and theoretical analyses, which find that the successive emergence of local defects plays a critical role in the realization of the wild-type pattern.
In this paper, we study a holographic dual of a confined fermi liquid state by putting a charged fluid of fermions in the AdS soliton geometry. This can be regarded as a confined analogue of electron stars. Depending on the parameters such as the mas s and charge of the bulk fermion field, we found three different phase structures when we change the values of total charge density at zero temperature. In one of the three cases, our confined solution (called soliton star) is always stable and this solution approaches to the electron star away from the tip. In both the second and third case, we find a confinement/deconfinement phase transition. Moreover, in the third one, there is a strong indication that the soliton star decays into an inhomogeneous solution. We also analyze the probe fermion equations (in the WKB approximation) in the background of this soliton star geometry to confirm the presence of many fermi-surfaces in the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا