ترغب بنشر مسار تعليمي؟ اضغط هنا

An orthonormal basis consisting of unentangled (pure tensor) elements in a tensor product of Hilbert spaces is an Unentangled Orthogonal Basis (UOB). In general, for $n$ qubits, we prove that in its natural structure as a real variety, the space of U OB is a bouquet of products of Riemann spheres parametrized by a class of edge colorings of hypercubes. Its irreducible components of maximum dimension are products of $2^n-1$ two-spheres. Using a theorem of Walgate and Hardy, we observe that the UOB whose elements are distinguishable by local operations and classical communication (called locally distinguishable or LOCC distinguishable UOB) are exactly those in the maximum dimensional components. Bennett et al, in their in-depth study of quantum nonlocality without entanglement, include a specific 3 qubit example UOB which is not LOCC distinguishable; we construct certain generalized counterparts of this UOB in $n$ qubits.
110 - Nolan Wallach 2013
We give an algorithm to solve the quantum hidden subgroup problem for maximal cyclic non-normal subgroups of the affine group of a finite field (if the field has order $q$ then the group has order $q(q-1)$) with probability $1-varepsilon$ with (polyl og) complexity $O(log(q)^{R}log(varepsilon)^{2})$ where $R<infty.$
The representation of the conformal group (PSU(2,2)) on the space of solutions to Maxwells equations on the conformal compactification of Minkowski space is shown to break up into four irreducible unitarizable smooth Frechet representations of modera te growth. An explicit inner product is defined on each representation. The frequency spectrum of each of these representations is analyzed. These representations have notable properties; in particular they have positive or negative energy, they are of type $A_{frak q}(lambda)$ and are quaternionic. Physical implications of the results are explained.
181 - Raul Gomez , Nolan Wallach 2010
A holomorphic continuation of Jacquet type integrals for parabolic subgroups with abelian nilradical is studied. Complete results are given for generic characters with compact stabilizer and arbitrary representations induced from admissible represent ations. A description of all of the pertinent examples is given. These results give a complete description of the Bessel models corresponding to compact stabilizer.
Let $G$ be a complex simple Lie group and let $g = hbox{rm Lie},G$. Let $S(g)$ be the $G$-module of polynomial functions on $g$ and let $hbox{rm Sing},g$ be the closed algebraic cone of singular elements in $g$. Let ${cal L}s S(g)$ be the (graded) id eal defining $hbox{rm Sing},g$ and let $2r$ be the dimension of a $G$-orbit of a regular element in $g$. Then ${cal L}^k = 0$ for any $k<r$. On the other hand, there exists a remarkable $G$-module $Ms {cal L}^r$ which already defines $hbox{rm Sing},g$. The main results of this paper are a determination of the structure of $M$.
We explore in this paper the spaces of common zeros of several deformations of Steenrod operators.
This work lies across three areas (in the title) of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link consists of a single formal power s eries with a multifaced interpretation. The deeper exploration of this link yielded results as well as methods for solving some numerical problems in each of these separate areas.
213 - Lei Ni , Nolan Wallach 2007
In this paper we classify the four dimensional gradient shrinking solitons under certain curvature conditions satisfied by all solitons arising from finite time singularities of Ricci flow on compact four manifolds with positive isotropic curvature. As a corollary we generalize a result of Perelman on three dimensional gradient shrinking solitons to dimension four.
140 - Lei Ni , Nolan Wallach 2007
The main purpose of this article is to provide an alternate proof to a result of Perelman on gradient shrinking solitons. In dimension three we also generalize the result by removing the $kappa$-non-collapsing assumption. In high dimension this new m ethod allows us to prove a classification result on gradient shrinking solitons with vanishing Weyl curvature tensor, which includes the rotationally symmetric ones.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا