ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a simple extension of the type-II two-Higgs-doublet model by introducing a real scalar as a candidate for dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is int o a $bbar{b}$ pair, and this annihilation mode suitably explains the observed excess of the gamma-ray flux from the Galactic Center. We identify the parameter region of the model that can fit the gamma-ray excess and satisfy phenomenological constraints, such as the observed dark matter relic density and the null results of direct dark matter search experiments. Most of the parameter region is found to be within the search reach of future direct dark matter detection experiments.
We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter (DM) in our Universe. This DM candidate is leptophilic for a wide range of model parameter space, and the lepton flux due to its annihilation carries information about the neutrino mass hierarchy. Using the recently released high precision data on positron fraction and flux from the AMS-02 experiment, we examine the DM interpretation of the observed positron excess in our model for two kinematically distinct scenarios with the DM and triplet scalar masses (a) non-degenerate ($m_{rm DM}gg m_{Delta}$), and (b) quasi-degenerate ($m_{rm DM} simeq m_Delta$). We find that a good fit to the AMS-02 data can be obtained in both cases (a) and (b) with a normal hierarchy of neutrino masses, while the inverted hierarchy case is somewhat disfavored. Although we require a larger boost factor for the normal hierarchy case, this is still consistent with the current upper limits derived from Fermi-LAT and IceCube data for case (a). Moreover, the absence of an excess anti-proton flux as suggested by PAMELA data sets an indirect upper limit on the DM-nucleon spin-independent elastic scattering cross section which is stronger than the existing DM direct detection bound from LUX in the AMS-02 preferred DM mass range.
The measurement of the Higgs coupling to W bosons is an important program at the international linear collider (ILC) to search for the anomaly in the coupling to the gauge bosons. We study the sensitivity of ILC to the Higgs anomalous coupling to W b osons by using ZH->vvWW* events. In this article, we report the status of the study.
We consider a class of supersymmetric models containing baryon number violating processes such as observable neutron - antineutron oscillations that are mediated by color triplet diquark fields. For plausible values of the diquark-quark couplings, th e scalar diquark with mass between a few hundred GeV and one TeV or so can be produced in the s-channel at the LHC and detected through its decay into a top quark and a hadronic jet.
We discuss how the cosmic ray signals reported by the PAMELA and ATIC/PPB-BETS experiments may be understood in a Standard Model (SM) framework supplemented by type II seesaw and a stable SM singlet scalar boson as dark matter. A particle physics exp lanation of the boost factor can be provided by including an additional SM singlet scalar field.
We study top-antitop pair production and top spin correlations in a model with an electrically neutral massive gauge boson, Z, at the Large Hadron Collider. In addition to the Standard Model processes, the Z contributes to the top-antitop pair produc tion process in the s-channel. Choosing a kinematical region of top invariant mass around the Z resonance pole, we find sizable deviations of the top-antitop pair production cross section and the top spin correlations from those of the Standard Model.
There are lots of new physics models which predict an extra neutral gauge boson, referred as Z-boson. In a certain class of these new physics models, the Z-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.
We investigate the so-called superWIMP scenario with gravitino as the lightest supersymmetric particle (LSP) in the context of non-standard cosmology, in particular, brane world cosmology. As a candidate of the next-to-LSP (NLSP), we examine slepton and sneutrino. Brane world cosmological effects dramatically enhance the relic density of the slepton or sneutrino NLSP, so that the NLSP with mass of order 100 GeV can provide the correct abundance of gravitino dark matter through its decay. We find that with an appropriate five dimensional Planck mass, this scenario can be realized consistently with the constraints from Big Bang Nucleosynthesis (BBN) for both NLSP candidates of slepton and sneutrino. The BBN constraints for slepton NLSP are more stringent than that for sneutrino, as the result, the gravitino must be rather warm in the slepton NLSP case. The energy density of gravitino produced by thermal scattering is highly suppressed and negligible due to the brane world cosmological effects.
We investigate supersymmetry breaking meta-stable vacua in N=2, SU(2)times U(1) gauge theory with N_f=2 massless flavors perturbed by the addition of small N=1 preserving mass terms in a presence of a Fayet-Iliopoulos term. We derive the low energy e ffective theory by using the exact results of N=2 supersymmetric QCD and examine the effective potential. At the classical level, the theory has supersymmetric vacua on Coulomb and Higgs branches. We find that supersymmetry on the Coulomb branch is dynamically broken as a consequence of the strong dynamics of SU(2) gauge symmetry while the supersymmetric vacuum on the Higgs branch remains. We also estimate the lifetimes of the local minima on the Coulomb branch. We find that they are sufficiently long and therefore the local vacua we find are meta-stable.
We consider an N=2 supersymmetric SU(2) times U(1) gauge theory with N_f=2 massless flavors and a Fayet-Iliopoulos (FI) term. In the presence of the FI term, supersymmetry is spontaneously broken at tree level (on the Coulomb branch), leaving a pseud o-flat direction in the classical potential. This vacuum degeneracy is removed once quantum corrections are taken into account. Due to the SU(2) gauge dynamics, the effective potential exhibits a local minimum at the dyon point, where not only supersymmetry but also U(1)_R symmetry is broken, while a supersymmetric vacuum would be realized toward infinity with the runaway behavior of the potential. This local minimum is found to be parametrically long-lived. Interestingly, from a phenomenological point of view, in this meta-stable vacuum the massive hypermultiplets inherent in the theory play the role of the messenger fields in the gauge mediation scenario, when the Standard Model gauge group is embedded into their flavor symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا