ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide the first exploration of text-to-text transformers (T5) sentence embeddings. Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks cast as sequence-to-sequence mapp ing problems, it is unclear how to produce sentence embeddings from encoder-decoder models. We investigate three methods for extracting T5 sentence embeddings: two utilize only the T5 encoder and one uses the full T5 encoder-decoder model. Our encoder-only models outperforms BERT-based sentence embeddings on both transfer tasks and semantic textual similarity (STS). Our encoder-decoder method achieves further improvement on STS. Scaling up T5 from millions to billions of parameters is found to produce consistent improvements on downstream tasks. Finally, we introduce a two-stage contrastive learning approach that achieves a new state-of-art on STS using sentence embeddings, outperforming both Sentence BERT and SimCSE.
In this work, we take the first steps towards building a universal rewriter: a model capable of rewriting text in any language to exhibit a wide variety of attributes, including styles and languages, while preserving as much of the original semantics as possible. In addition to obtaining state-of-the-art results on unsupervised translation, we also demonstrate the ability to do zero-shot sentiment transfer in non-English languages using only English exemplars for sentiment. We then show that our model is able to modify multiple attributes at once, for example adjusting both language and sentiment jointly. Finally, we show that our model is capable of performing zero-shot formality-sensitive translation.
Recently, mT5 - a massively multilingual version of T5 - leveraged a unified text-to-text format to attain state-of-the-art results on a wide variety of multilingual NLP tasks. In this paper, we investigate the impact of incorporating parallel data i nto mT5 pre-training. We find that multi-tasking language modeling with objectives such as machine translation during pre-training is a straightforward way to improve performance on downstream multilingual and cross-lingual tasks. However, the gains start to diminish as the model capacity increases, suggesting that parallel data might not be as essential for larger models. At the same time, even at larger model sizes, we find that pre-training with parallel data still provides benefits in the limited labelled data regime.
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Toke n-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
In this work, we explore prompt tuning, a simple yet effective mechanism for learning soft prompts to condition frozen language models to perform specific downstream tasks. Unlike the discrete text prompts used by GPT-3, soft prompts are learned thro ugh backpropagation and can be tuned to incorporate signal from any number of labeled examples. Our end-to-end learned approach outperforms GPT-3s few-shot learning by a large margin. More remarkably, through ablations on model size using T5, we show that prompt tuning becomes more competitive with scale: as models exceed billions of parameters, our method closes the gap and matches the strong performance of model tuning (where all model weights are tuned). This finding is especially relevant in that large models are costly to share and serve, and the ability to reuse one frozen model for multiple downstream tasks can ease this burden. Our method can be seen as a simplification of the recently proposed prefix tuning of Li and Liang (2021), and we provide a comparison to this and other similar approaches. Finally, we show that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer, as compared to full model tuning.
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models.
We propose a straightforward vocabulary adaptation scheme to extend the language capacity of multilingual machine translation models, paving the way towards efficient continual learning for multilingual machine translation. Our approach is suitable f or large-scale datasets, applies to distant languages with unseen scripts, incurs only minor degradation on the translation performance for the original language pairs and provides competitive performance even in the case where we only possess monolingual data for the new languages.
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
The recent Text-to-Text Transfer Transformer (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent accidental translation in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.
We present a novel approach to the problem of text style transfer. Unlike previous approaches requiring style-labeled training data, our method makes use of readily-available unlabeled text by relying on the implicit connection in style between adjac ent sentences, and uses labeled data only at inference time. We adapt T5 (Raffel et al., 2020), a strong pretrained text-to-text model, to extract a style vector from text and use it to condition the decoder to perform style transfer. As our label-free training results in a style vector space encoding many facets of style, we recast transfers as targeted restyling vector operations that adjust specific attributes of the input while preserving others. We demonstrate that training on unlabeled Amazon reviews data results in a model that is competitive on sentiment transfer, even compared to models trained fully on labeled data. Furthermore, applying our novel method to a diverse corpus of unlabeled web text results in a single model capable of transferring along multiple dimensions of style (dialect, emotiveness, formality, politeness, sentiment) despite no additional training and using only a handful of exemplars at inference time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا