ترغب بنشر مسار تعليمي؟ اضغط هنا

425 - Rupert Croft 2011
We use a large dark matter simulation of a LambdaCDM model to investigate the clustering and environmental dependence of the number of substructures in a halo. Focusing on redshift z=1, we find that the halo occupation distribution is sensitive at th e tens of percent level to the surrounding density and to a lesser extent to asymmetry of the surrounding density distribution. We compute the autocorrelation function of halos as a function of occupation, building on the finding of Wechsler et al. (2006) and Gao and White (2007) that halos (at fixed mass) with more substructure are more clustered. We compute the relative bias as a function of occupation number at fixed mass, finding a strong relationship. At fixed mass, halos in the top 5% of occupation can have an autocorrelation function ~ 1.5-2 times higher than the mean. We also compute the bias as a function of halo mass, for fixed halo occupation. We find that for group and cluster sized halos, when the number of subhalos is held fixed, there is a strong anticorrelation between bias and halo mass. Such a relationship represents an additional challenge to the halo model.
We use a large N-body simulation to examine the detectability of HI in emission at redshift z ~ 1, and the constraints imposed by current observations on the neutral hydrogen mass function of galaxies at this epoch. We consider three different models for populating dark matter halos with HI, designed to encompass uncertainties at this redshift. These models are consistent with recent observations of the detection of HI in emission at z ~ 0.8. Whilst detection of 21 cm emission from individual halos requires extremely long integrations with existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show that the stacked 21 cm signal from a large number of halos can be easily detected. However, the stacking procedure requires accurate redshifts of galaxies. We show that radio observations of the field of the DEEP2 spectroscopic galaxy redshift survey should allow detection of the HI mass function at the 5-12 sigma level in the mass range 10^(11.4) M_sun/h < M_halo < 10^(12.5)M_sun/h, with a moderate amount of observation time. Assuming a larger noise level that corresponds to an upper bound for the expected noise for the GMRT, the detection significance for the HI mass function is still at the 1.7-3 sigma level. We find that optically undetected satellite galaxies enhance the HI emission profile of the parent halo, leading to broader wings as well as a higher peak signal in the stacked profile of a large number of halos. We show that it is in principle possible to discern the contribution of undetected satellites to the total HI signal, even though cosmic variance limitation make this challenging for some of our models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا