ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{ 2z}$ symmetry on the moire length scale. Within elastic theory, we provide a complete classification of van der Waals heterostructures in respect to hosting moire chiral phonons and discuss their emergence in twisted bilayer MoS$_2$ as an example. The formation of the chiral phonons can be qualitatively understood using an effective model, which emphasizes their origin in the energy difference between stacking domains. Since moire chiral phonons are highly tunable, with excitation energies in only a few meV, and moire scale wavelengths, they might find potential applications in phononic twistronic devices.
Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined wi th the underlying crystal symmetry produces tunable magneto-optical phenomena that is unique to the two-dimensional (2D) limit. Here, we report the direct observation of 2D magnons through magneto-Raman spectroscopy with optical selection rules that are strictly determined by the honeycomb lattice and magnetic states of atomically thin CrI$_3$. In monolayers, we observe an acoustic magnon mode of ~0.3 meV with cross-circularly polarized selection rules locked to the magnetization direction. These unique selection rules arise from the discrete conservation of angular momentum of photons and magnons dictated by threefold rotational symmetry in a rotational analogue to Umklapp scattering. In bilayers, by tuning between the layered antiferromagnetic and ferromagnetic-like states, we observe the switching of two magnon modes. The bilayer structure also enables Raman activity from the optical magnon mode at ~17 meV (~4.2 THz) that is otherwise Raman-silent in the monolayer. From these measurements, we quantitatively extract the spin wave gap, magnetic anisotropy, intralayer and interlayer exchange constants, and establish 2D magnets as a new system for exploring magnon physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا