ترغب بنشر مسار تعليمي؟ اضغط هنا

While there have been a lot of recent developments in the context of Bayesian model selection and variable selection for high dimensional linear models, there is not much work in the presence of change point in literature, unlike the frequentist coun terpart. We consider a hierarchical Bayesian linear model where the active set of covariates that affects the observations through a mean model can vary between different time segments. Such structure may arise in social sciences/ economic sciences, such as sudden change of house price based on external economic factor, crime rate changes based on social and built-environment factors, and others. Using an appropriate adaptive prior, we outline the development of a hierarchical Bayesian methodology that can select the true change point as well as the true covariates, with high probability. We provide the first detailed theoretical analysis for posterior consistency with or without covariates, under suitable conditions. Gibbs sampling techniques provide an efficient computational strategy. We also consider small sample simulation study as well as application to crime forecasting applications.
Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices. We develop a Bayesian method to incorporate covariate information in this GGMs setup in a nonlinear seemingly unrelated regression framework. We propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, we investigate its theoretical variable selection properties. We demonstrate our method on a variety of simulated data, concluding with a real data set from the TCPA project.
128 - Nilabja Guha , Anindya Roy 2020
Estimating the mixing density of a mixture distribution remains an interesting problem in statistics literature. Using a stochastic approximation method, Newton and Zhang (1999) introduced a fast recursive algorithm for estimating the mixing density of a mixture. Under suitably chosen weights the stochastic approximation estimator converges to the true solution. In Tokdar et. al. (2009) the consistency of this recursive estimation method was established. However, the proof of consistency of the resulting estimator used independence among observations as an assumption. Here, we extend the investigation of performance of Newtons algorithm to several dependent scenarios. We first prove that the original algorithm under certain conditions remains consistent when the observations are arising form a weakly dependent process with fixed marginal with the target mixture as the marginal density. For some of the common dependent structures where the original algorithm is no longer consistent, we provide a modification of the algorithm that generates a consistent estimator.
In this paper, we propose a Bayesian approach for multiscale problems with the availability of dynamic observational data. Our method selects important degrees of freedom probabilistically in a Generalized multiscale finite element method framework. Due to scale disparity in many multiscale applications, computational models can not resolve all scales. Dominant modes in the Generalized Multiscale Finite Element Method are used as permanent basis functions, which we use to compute an inexpensive multiscale solution and the associated uncertainties. Through our Bayesian framework, we can model approximate solutions by selecting the unresolved scales probabilistically. We consider parabolic equations in heterogeneous media. The temporal domain is partitioned into subintervals. Using residual information and given dynamic data, we design appropriate prior distribution for modeling missing subgrid information. The likelihood is designed to minimize the residual in the underlying PDE problem and the mismatch of observational data. Using the resultant posterior distribution, the sampling process identifies important degrees of freedom beyond permanent basis functions. The method adds important degrees of freedom in resolving subgrid information and ensuring the accuracy of the observations.
Conditional density estimation (density regression) estimates the distribution of a response variable y conditional on covariates x. Utilizing a partition model framework, a conditional density estimation method is proposed using logistic Gaussian pr ocesses. The partition is created using a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The Markov chain Monte Carlo algorithm is made possible through a Laplace approximation on the latent variables of the logistic Gaussian process model. This approximation marginalizes the parameters in each partition element, allowing an efficient search of the posterior distribution of the tessellation. The method has desirable consistency properties. In simulation and applications, the model successfully estimates the partition structure and conditional distribution of y.
Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic explora tion of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset wherein multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.
In this paper, we study porous media flows in heterogeneous stochastic media. We propose an efficient forward simulation technique that is tailored for variational Bayesian inversion. As a starting point, the proposed forward simulation technique dec omposes the solution into the sum of separable functions (with respect to randomness and the space), where each term is calculated based on a variational approach. This is similar to Proper Generalized Decomposition (PGD). Next, we apply a multiscale technique to solve for each term and, further, decompose the random function into 1D fields. As a result, our proposed method provides an approximation hierarchy for the solution as we increase the number of terms in the expansion and, also, increase the spatial resolution of each term. We use the hierarchical solution distributions in a variational Bayesian approximation to perform uncertainty quantification in the inverse problem. We conduct a detailed numerical study to explore the performance of the proposed uncertainty quantification technique and show the theoretical posterior concentration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا