ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we compute the Fourier spectrum of the Fractal Interpolation Functions FIFs as introduced by Michael Barnsley. We show that there is an analytical way to compute them. In this paper we attempt to solve the inverse problem of FIF by using the spectrum
In this paper we explore avenues for improving the reliability of dimensionality reduction methods such as Non-Negative Matrix Factorization (NMF) as interpretive exploratory data analysis tools. We first explore the difficulties of the optimization problem underlying NMF, showing for the first time that non-trivial NMF solutions always exist and that the optimization problem is actually convex, by using the theory of Completely Positive Factorization. We subsequently explore four novel approaches to finding globally-optimal NMF solutions using various ideas from convex optimization. We then develop a new method, isometric NMF (isoNMF), which preserves non-negativity while also providing an isometric embedding, simultaneously achieving two properties which are helpful for interpretation. Though it results in a more difficult optimization problem, we show experimentally that the resulting method is scalable and even achieves more compact spectra than standard NMF.
Maximum Variance Unfolding (MVU) and its variants have been very successful in embedding data-manifolds in lower dimensional spaces, often revealing the true intrinsic dimension. In this paper we show how to also incorporate supervised class informat ion into an MVU-like method without breaking its convexity. We call this method the Isometric Separation Map and we show that the resulting kernel matrix can be used as a binary/multiclass Support Vector Machine-like method in a semi-supervised (transductive) framework. We also show that the method always finds a kernel matrix that linearly separates the training data exactly without projecting them in infinite dimensional spaces. In traditional SVMs we choose a kernel and hope that the data become linearly separable in the kernel space. In this paper we show how the hyperplane can be chosen ad-hoc and the kernel is trained so that data are always linearly separable. Comparisons with Large Margin SVMs show comparable performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا