ترغب بنشر مسار تعليمي؟ اضغط هنا

Light amplification by stimulated emission of radiation (laser) sources have many advantages for use in high data rate optical wireless communications. In particular, the low cost and high-bandwidth properties of laser sources such as vertical-cavity surface-emitting lasers (VCSELs) make them attractive for future indoor optical wireless communications. In order to be integrated into future indoor networks, such lasers should conform to eye safety regulations determined by the international electrotechnical commission (IEC) standards for laser safety. In this paper, we provide a detailed study of beam propagation to evaluate the received power of various laser sources, based on which as well as the maximum permissible exposure (MPE) defined by the IEC 60825-1:2014 standard, we establish a comprehensive framework for eye safety analyses. This framework allows us to calculate the maximum allowable transmit power, which is crucial in the design of a reliable and safe laser-based wireless communication system. Initially, we consider a single-mode Gaussian beam and calculate the maximum permissible transmit power. Subsequently, we generalize this approach for higher-mode beams. It is shown that the M-squared-based approach for analysis of multimode lasers ensures the IEC eye safety limits, however, in some scenarios, it can be too conservative compared to the precise beam decomposition method. Laser safety analyses with consideration of optical elements such as lens and diffuser, as well as for VCSEL array have been also presented. Skin safety, as another significant factor of laser safety, has also been investigated in this paper. We have studied the impacts of various parameters such as wavelength, exposure duration and the divergence angle of laser sources on the safety analysis by presenting insightful results.
Optical interconnects play a key role in the implementation of high-speed short-reach communication links within high-performance electronic systems. Multimode polymer waveguides in particular are strong candidates for use in passive optical backplan es as they can be cost-effectively integrated onto standard PCBs. Various optical backplanes using this technology and featuring a large number of multimode polymer waveguide components have been recently demonstrated. The optimisation of the loss performance of these complex waveguide layouts becomes particularly important at high data rates (>=25 Gb/s) due to the associated stringent power budget requirements. Moreover, launch conditions have to be carefully considered in such systems due to the highly-multimoded nature of this waveguide technology. In this paper therefore, we present thorough loss and bandwidth studies on siloxane-based multimode waveguides and waveguide components (i.e. bends and crossings) that enable the implementation of passive optical backplanes. The performance of these components is experimentally investigated under different launch conditions for different waveguide profiles that can be readily achieved through fabrication. Useful design rules on the use of waveguide bends and crossings are derived for each waveguide type. It is shown that the choice of waveguide parameters depends on the particular waveguide layout, assumed launch conditions and desired link bandwidth. As an application of these studies, the obtained results are employed to optimise the loss performance of a 10-card shuffle router and enable >=40 Gb/s data transmission.
Optical interconnects have attracted significant research interest for use in short-reach board-level optical communication links in supercomputers and data centres. Multimode polymer waveguides in particular constitute an attractive technology for o n-board optical interconnects as they provide high bandwidth, offer relaxed alignment tolerances, and can be cost-effectively integrated onto standard printed circuit boards (PCBs). However, the continuing improvements in bandwidth performance of optical sources make it important to investigate approaches to develop high bandwidth polymer waveguides. In this paper, we present dispersion studies on a graded-index (GI) waveguide in siloxane materials designed to deliver high bandwidth over a range of launch conditions. Bandwidth-length products of >70 GHzxm and ~65 GHzxm are observed using a 50/125 um multimode fibre (MMF) launch for input offsets of +/- 10 um without and with the use of a mode mixer respectively; and enhanced values of >100 GHzxm are found under a 10x microscope objective launch for input offsets of ~18 x 20 um^2. The large range of offsets is within the -1 dB alignment tolerances. A theoretical model is developed using the measured refractive index profile of the waveguide, and general agreement is found with experimental bandwidth measurements. The reported results clearly demonstrate the potential of this technology for use in high-speed board-level optical links, and indicate that data transmission of 100 Gb/s over a multimode polymer waveguide is feasible with appropriate refractive index engineering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا