ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider some measure-theoretic properties of functions belonging to a Sobolev-type class on metric measure spaces that admit a Poincare inequality and are equipped with a doubling measure. The properties we have selected to study are those that are related to area formulas.
The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with $N^{1,1}$-spaces) and the theory of heat semigroups (a concept related to $N^{1,2}$-spaces) in the setting of metric measure spaces whose measure is doubling and supports a $1$-Poincare inequality. We prove a characterization of sets of finite perimeter in terms of a short time behavior of the heat semigroup in such metric spaces. We also give a new characterization of ${rm BV}$ functions in terms of a near-diagonal energy in this general setting.
We investigate a version of the Phragmen-Lindelof theorem for solutions of the equation $Delta_infty u=0$ in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the $p$-harmonic equation when $p$ tends to $infty$.
This paper studies functions of bounded mean oscillation (BMO) on metric spaces equipped with a doubling measure. The main result gives characterizations for mappings that preserve BMO. This extends the corresponding Euclidean results by Gotoh to met ric measure spaces. The argument is based on a generalizations Uchiyamas construction of certain extremal BMO-functions and John-Nirenbergs lemma.
We consider arithmetic three-spheres inequalities to solutions of certain second order quasilinear elliptic differential equations and inequalities with a Riccati-type drift term.
We study mean value properties of harmonic functions in metric measure spaces. The metric measure spaces we consider have a doubling measure and support a (1,1)- Poincare inequality. The notion of harmonicity is based on the Dirichlet form defined in terms of a Cheeger differentiable structure. By studying fine properties of the Green function on balls, we characterize harmonic functions in terms of a mean value property. As a consequence, we obtain a detailed description of Poisson kernels. We shall also obtain a Gauss-Green type formula for sets of finite perimeter which posses a Minkowski content characterization of the perimeter. For the Gauss-Green formula we introduce a suitable notion of the interior normal trace of a regular ball.
In this note we consider problems related to parabolic partial differential equations in geodesic metric measure spaces, that are equipped with a doubling measure and a Poincare inequality. We prove a location and scale invariant Harnack inequality f or a minimizer of a variational problem related to a doubly non-linear parabolic equation involving the p-Laplacian. Moreover, we prove the sufficiency of the Grigoryan--Saloff-Coste theorem for general p > 1 in geodesic metric spaces. The approach used is strictly variational, and hence we are able to carry out the argument in the metric setting.
We consider planar solutions to certain quasilinear elliptic equations subject to the Dirichlet boundary conditions; the boundary data is assumed to have finite number of relative maximum and minimum values. We are interested in certain vanishing pro perties of sign changing solutions to such a Dirichlet problem. Our method is applicable in the plane.
We study the nonlinear eigenvalue problem for the p-Laplacian, and more general problem constituting the Fucik spectrum. We are interested in some vanishing properties of sign changing solutions to these problems. Our method is applicable in the plane.
We describe the behavior of p-harmonic Greens functions near a singularity in metric measure spaces equipped with a doubling measure and supporting a Poincare inequality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا