ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical spectroscopic monitoring has been conducted of two O stars in the Small and one in the Large Magellanic Cloud, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of obliq ue magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from OGLE data by Naze et al. (2015) in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.
In order to better determine the physical properties of hot, massive stars as a function of metallicity, we obtained very high SNR optical spectra of 26 O and early B stars in the Magellanic Clouds. These allow accurate modeling even in cases where t he He I 4471 line has an equivalent width of only a few tens of mA. The spectra were modeled with FASTWIND, with good fits obtained for 18 stars; the remainder show signatures of being binaries. We include stars in common to recent studies to investigate possible systematic differences. The automatic FASTWIND modeling method of Mokiem and collaborators produced temperatures 1100 K hotter on the average, presumably due to the different emphasis given to various temperature-sensitive lines. More significant, however, is that the automatic method always produced some best answer, even for stars we identify as composite (binaries). The temperatures found by the TLUSTY/CMFGEN modeling of Bouret, Heap, and collaborators yielded temperatures 1000 K cooler than ours, on average. Significant outliers were due either to real differences in the data (some of the Bouret/Heap data were contaminated by moonlight continua) or the fact we could detect the HeI line needed to better constrain the temperature. Our new data agrees well with the effective temperature scale we presented previously. We confirm that the Of emission-lines do not track luminosity classes in the exact same manner as in Milky Way stars. We revisit the the issue of the mass discrepancy, finding that some of the stars in our sample do have spectroscopic masses that are significantly smaller than those derived from stellar evolutionary models. We do not find that the size of the mass discrepancy is simply related to either effective temperature or surface gravity.
We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST ACS/HRC images. We use these data to derive an improved distance to the cluster, and to construct an H-R diagram for discussing the masses and ages of the massive star content of this cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا