ترغب بنشر مسار تعليمي؟ اضغط هنا

So far magnetic domain walls in one-dimensional structures have been described theoretically only in the cases of flat strips, or cylindrical structures with a compact cross-section, either square or disk. Here we describe an extended phase diagram u nifying the two pictures, extensively covering the (width,thickness) space. It is derived on the basis of symmetry and phase-transition arguments, and micromagnetic simulations. A simple classification of all domain walls in two varieties is proposed on the basis of their topology: either with a combined transverse/vortex character, or of the Bloch-point type. The exact arrangement of magnetization within each variety results mostly from the need to decrease dipolar energy, giving rise to asymmetric and curling structures. Numerical evaluators are introduced to quantify curling, and scaling laws are derived analytically for some of the iso-energy lines of the phase diagram.
114 - Jan Vogel 2012
Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO$_x$) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain wall s start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low mass of these domain walls is attributed to the combination of their narrow width and high damping parameter $alpha$. Such a small inertia should allow accurate control of domain wall motion, by tuning the duration and amplitude of the current pulses.
We investigate numerically the transverse versus vortex phase diagram of head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy), in which the Co layer is mostly single domain while the Py layer hosts the domain wall. The range of stability of the transverse wall is shifted towards larger thickness compared to single Py layers, due to a magnetostatic screening effect between the two layers. An approached analytical scaling law is derived, which reproduces faithfully the phase diagram.
We investigated with XMCD-PEEM magnetic imaging the magnetization reversal processes of Neel caps inside Bloch walls in self-assembled, micron-sized Fe(110) dots with flux-closure magnetic state. In most cases the magnetic-dependent processes are sym metric in field, as expected. However, some dots show pronounced asymmetric behaviors. Micromagnetic simulations suggest that the geometrical features (and their asymmetry) of the dots strongly affect the switching mechanism of the Neel caps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا