ترغب بنشر مسار تعليمي؟ اضغط هنا

The profile of a relational structure $R$ is the function $varphi_R$ which counts for every integer $n$ the number, possibly infinite, $varphi_R(n)$ of substructures of $R$ induced on the $n$-element subsets, isomorphic substructures being identified . If $varphi_R$ takes only finite values, this is the Hilbert function of a graded algebra associated with $R$, the age algebra $A(R)$, introduced by P.~J.~Cameron. In a previous paper, we studied the relationship between the properties of a relational structure and those of their algebra, particularly when the relational structure $R$ admits a finite monomorphic decomposition. This setting still encompasses well-studied graded commutative algebras like invariant rings of finite permutation groups, or the rings of quasi-symmetric polynomials. In this paper, we investigate how far the well know algebraic properties of those rings extend to age algebras. The main result is a combinatorial characterization of when the age algebra is finitely generated. In the special case of tournaments, we show that the age algebra is finitely generated if and only if the profile is bounded. We explore the Cohen-Macaulay property in the special case of invariants of permutation groupoids. Finally, we exhibit sufficient conditions on the relational structure that make naturally the age algebra into a Hopf algebra.
We prove that the expected number of braid moves in the commutation class of the reduced word $(s_1 s_2 cdots s_{n-1})(s_1 s_2 cdots s_{n-2}) cdots (s_1 s_2)(s_1)$ for the long element in the symmetric group $mathfrak{S}_n$ is one. This is a variant of a similar result by V. Reiner, who proved that the expected number of braid moves in a random reduced word for the long element is one. The proof is bijective and uses X. Viennots theory of heaps and variants of the promotion operator. In addition, we provide a refinement of this result on orbits under the action of even and odd promotion operators. This gives an example of a homomesy for a nonabelian (dihedral) group that is not induced by an abelian subgroup. Our techniques extend to more general posets and to other statistics.
We study the four infinite families KA(n), KB(n), KD(n), KQ(n) of finite dimensional Hopf (in fact Kac) algebras constructed respectively by A. Masuoka and L. Vainerman: isomorphisms, automorphism groups, self-duality, lattices of coideal subalgebras . We reduce the study to KD(n) by proving that the others are isomorphic to KD(n), its dual, or an index 2 subalgebra of KD(2n). We derive many examples of lattices of intermediate subfactors of the inclusions of depth 2 associated to those Kac algebras, as well as the corresponding principal graphs, which is the original motivation. Along the way, we extend some general results on the Galois correspondence for depth 2 inclusions, and develop some tools and algorithms for the study of twisted group algebras and their lattices of coideal subalgebras. This research was driven by heavy computer exploration, whose tools and methodology we further describe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا