ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the problem of sampling from a density of the form $p(x) propto exp(-f(x)- g(x))$, where $f: mathbb{R}^d rightarrow mathbb{R}$ is a smooth and strongly convex function and $g: mathbb{R}^d rightarrow mathbb{R}$ is a convex and Lipschitz fu nction. We propose a new algorithm based on the Metropolis-Hastings framework, and prove that it mixes to within TV distance $varepsilon$ of the target density in at most $O(d log (d/varepsilon))$ iterations. This guarantee extends previous results on sampling from distributions with smooth log densities ($g = 0$) to the more general composite non-smooth case, with the same mixing time up to a multiple of the condition number. Our method is based on a novel proximal-based proposal distribution that can be efficiently computed for a large class of non-smooth functions $g$.
We present an improved analysis of the Euler-Maruyama discretization of the Langevin diffusion. Our analysis does not require global contractivity, and yields polynomial dependence on the time horizon. Compared to existing approaches, we make an addi tional smoothness assumption, and improve the existing rate from $O(eta)$ to $O(eta^2)$ in terms of the KL divergence. This result matches the correct order for numerical SDEs, without suffering from exponential time dependence. When applied to algorithms for sampling and learning, this result simultaneously improves all those methods based on Dalayans approach.
In this paper, we study the problems of principal Generalized Eigenvector computation and Canonical Correlation Analysis in the stochastic setting. We propose a simple and efficient algorithm, Gen-Oja, for these problems. We prove the global converge nce of our algorithm, borrowing ideas from the theory of fast-mixing Markov chains and two-time-scale stochastic approximation, showing that it achieves the optimal rate of convergence. In the process, we develop tools for understanding stochastic processes with Markovian noise which might be of independent interest.
We show that accelerated gradient descent, averaged gradient descent and the heavy-ball method for non-strongly-convex problems may be reformulated as constant parameter second-order difference equation algorithms, where stability of the system is eq uivalent to convergence at rate O(1/n 2), where n is the number of iterations. We provide a detailed analysis of the eigenvalues of the corresponding linear dynamical system , showing various oscillatory and non-oscillatory behaviors, together with a sharp stability result with explicit constants. We also consider the situation where noisy gradients are available, where we extend our general convergence result, which suggests an alternative algorithm (i.e., with different step sizes) that exhibits the good aspects of both averaging and acceleration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا