ترغب بنشر مسار تعليمي؟ اضغط هنا

LSQ14bdq and SN 2006oz are super-luminous, hydrogen-poor, SNe with double-humped light curves. We show that a Quark-Nova (QN; explosive transition of the neutron star to a quark star) occurring in a massive binary, experiencing two Common Envelope (C E) phases, can quantitatively explain the light curves of LSQ14bdq and SN 2006oz. The more massive component (A) explodes first as a normal SN, yielding a Neutron Star which ejects the hydrogen envelope of the companion when the system enters its first CE phase. During the second CE phase, the NS spirals into and inflates the second He-rich CE. In the process it gains mass and triggers a Quark-Nova, outside of the CO core, leaving behind a Quark Star. The first hump in our model is the QN shock re-energizing the expanded He-rich CE. The QN occurs when the He-rich envelope is near maximum size (~ 1000R_sun) and imparts enough energy to unbind and eject the envelope. Subsequent merging of the Quark Star with the CO core of component B, driven by gravitational radiation, turns the Quark star to a Black Hole. The ensuing Black Hole accretion provides sufficient power for the second brighter and long lasting hump. Our model suggests a possible connection between SLSNe-I and type Ic-BL SNe which occur when the Quark Nova is triggered inside the CO core. We estimate the rate of QNe in massive binaries during the second CE phase to be ~ 5x10^(-5) of that of core-collapse SNe.
Burn-UD is a hydrodynamic combustion code used to model the phase transition of hadronic to quark matter with particular application to the interior of neutron stars. Burn-UD models the flame micro-physics for different equations of state (EoS) on bo th sides of the interface, i.e. for both the ash (up-down-strange quark phase) and the fuel (up-down quark phase). It also allows the user to explore strange quark seeding produced by different processes including DM annihilation inside neutron stars. The simulations provide a physical window to diagnose whether the combustion process will simmer quietly and slowly, lead to a transition from deflagration to detonation or a (quark) core-collapse explosion. Such an energetic phase transition (a Quark-Nova) would have consequences in high-energy astrophysics and could aid in our understanding of many still enigmatic astrophysical transients. Furthermore, having a precise understanding of the phase transition dynamics for different EoSs could aid further in constraining the nature of the non-perturbative regimes of QCD in general. We hope that Burn-UD will evolve into a platform/software to be used and shared by the QCD community exploring the phases of Quark Matter and astrophysicists working on Compact Stars.
We report the results of radio interferometric observations of the 21-micron source IRAS 22272+5435 in the CO J=2-1 line. 21-micron sources are carbon-rich objects in the post-AGB phase of evolution which show an unidentified emission feature at 21 m icron. Since 21-micron sources usually also have circumstellar molecular envelopes, the mapping of CO emission from the envelope will be useful in tracing the nebular structure. From observations made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), we find that a torus and spherical wind model can explain only part of the CO structure. An additional axisymmetric region created by the interaction between an invisible jet and ambient material is suggested.
We report the results of a Submillimeter Array (SMA) interferometric observation of 21-micron source IRAS 07134+1005 in the CO J=3-2 line. In order to determine the morpho-kinematic properties of the molecular envelope of the object, we constructed a model using the Shape software to model the observed CO map. We find that the molecular gas component of the envelopes can be interpreted as a geometrically thick expanding torus with an expanding velocity of 8 km/s. The inner and outer radii of the torus determined by fitting Shape models are 1.2 and 3.0, respectively. The inner radius is consistent with the previous values determined by radiative transfer modeling of the spectral energy distribution and mid-infrared imaging of the dust component. The radii and expansion velocity of the torus suggest that the central star has left the asymptotic giant branch about 1140-1710 years ago, and that the duration of the equatorial enhanced mass loss is about 2560-3130 years. From the absence of an observed jet, we suggest that the formation of a bipolar outflow may lack behind in time from the creation of the equatorial torus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا